1,699
Views
58
CrossRef citations to date
0
Altmetric
Research Paper

miR-148a and miR-17–5p synergistically regulate milk TAG synthesis via PPARGC1A and PPARA in goat mammary epithelial cells

, , , , &
Pages 326-338 | Received 31 Aug 2016, Accepted 17 Dec 2016, Published online: 02 Feb 2017

References

  • Alaynick WA. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion 2008; 8(4):329-37. PMID:18375192; http://dx.doi.org/10.1016/j.mito.2008.02.001
  • Anagnostopoulos AK, Katsafadou AI, Pierros V, Kontopodis E, Fthenakis GC, Arsenos G, Karkabounas S, Tzora A, Skoufos I, Tsangaris GT. Milk of Greek sheep and goat breeds; characterization by means of proteomics. J Proteomics 2016; 147:76-84. PMID:27102495; http://dx.doi.org/10.1016/j.jprot.2016.04.008
  • Avery-Kiejda KA, Braye SG, Mathe A, Forbes JF, Scott RJ. Decreased expression of key tumour suppressor microRNAs is associated with lymph node metastases in triple negative breast cancer. BMC Cancer 2014; 14:51. PMID:24479446; http://dx.doi.org/10.1186/1471-2407-14-51
  • Avril-Sassen S, Goldstein LD, Stingl J, Blenkiron C, Le Quesne J, Spiteri I, Karagavriilidou K, Watson CJ, Tavare S, Miska EA, et al. Characterisation of microRNA expression in post-natal mouse mammary gland development. BMC Genomics 2009; 10:548. PMID:19930549; http://dx.doi.org/10.1186/1471-2164-10-548
  • Bao H, Kommadath A, Sun X, Meng Y, Arantes AS, Plastow GS, Guan LL, Stothard P. Expansion of ruminant-specific microRNAs shapes target gene expression divergence between ruminant and non-ruminant species. BMC Genomics 2013; 14:609. PMID:24020371; http://dx.doi.org/10.1186/1471-2164-14-609
  • Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 2008; 9(1):366. PMID:18671863; http://dx.doi.org/10.1186/1471-2164-9-366
  • Bionaz M, Loor JJ. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform Biol Insights 2011; 83-92; PMID:21698073
  • Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. 2004. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 25(5-6):495-520. PMID:15363638; http://dx.doi.org/10.1016/j.mam.2004.06.004
  • Bonnet M, Bernard L, Bes S, Leroux C. Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. Animal 2013; 7(08):1344-53. PMID:23552195; http://dx.doi.org/10.1017/S1751731113000475
  • Bu DP, Nan XM, Wang F, Loor JJ, Wang JQ. Identification and characterization of microRNA sequences from bovine mammary epithelial cells. J Dairy Sci 2015; 98(3):1696-705. PMID:25622872; http://dx.doi.org/10.3168/jds.2014-8217
  • Calvano Filho CM, Calvano-Mendes DC, Carvalho KC, Maciel GA, Ricci MD, Torres AP, Filassi JR, Baracat EC. Triple-negative and luminal A breast tumors: differential expression of miR-18a-5p, miR-17-5p, and miR-20a-5p. Tumour Biol 2014; 35(8):7733-41. PMID:24810926; http://dx.doi.org/10.1007/s13277-014-2025-7
  • Chen Z, Luo J, Ma L, Wang H, Cao W, Xu H, Zhu J, Sun Y, Li J, Yao D, et al. MiR130b-Regulation of PPARgamma Coactivator- 1alpha Suppresses Fat Metabolism in Goat Mammary Epithelial Cells. PloS one 2015; 10(11):e0142809. PMID:26579707; http://dx.doi.org/10.1371/journal.pone.0142809
  • Chen Z, Qiu H, Ma L, Luo J, Sun S, Kang K, Gou D, Loor JJ. miR-30e-5p and miR-15a Synergistically Regulate Fatty Acid Metabolism in Goat Mammary Epithelial Cells via LRP6 and YAP1. Int J Mol Sci 2016a; 17(11).; PMID:27854329
  • Chen Z, Shi H, Sun S, Xu H, Cao D, Luo J. MicroRNA-181b suppresses TAG via target IRS2 and regulating multiple genes in the Hippo pathway. Exp Cell Res 2016b; 348(1):66-74. PMID:27616141.; http://dx.doi.org/10.1016/j.yexcr.2016.09.004
  • Chilliard Y, Ferlay A, Rouel J, Lamberet G. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J Dairy Sci 2003; 86(5):1751-70. PMID:12778586; http://dx.doi.org/10.3168/jds.S0022-0302(03)73761-8
  • Danza K, Silvestris N, Simone G, Signorile M, Saragoni L, Brunetti O, Monti M, Mazzotta A, De Summa S, Mangia A, et al. Role of miR-27a, miR-181a and miR-20b in gastric cancer hypoxia-induced chemoresistance. Cancer Biol Ther 2016; 17(4):400-6; PMID:26793992
  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432(7014):231-5. PMID:15531879; http://dx.doi.org/10.1038/nature03049
  • Destaillats F, Angers P. Base-catalyzed derivatization methodology for FA analysis. Application to Milk fat and Celery Seed Lipid TAG. Lipids 2002; 37(5):527-32.; PMID:12056597
  • Estall JL, Kahn M, Cooper MP, Fisher FM, Wu MK, Laznik D, Qu L, Cohen DE, Shulman GI, Spiegelman BM. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 2009; 58(7):1499-508. PMID:19366863; http://dx.doi.org/10.2337/db08-1571
  • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Ann Rev Biochem 2010; 79:351-79. PMID:20533884; http://dx.doi.org/10.1146/annurev-biochem-060308-103103
  • Fu J, Tang W, Du P, Wang G, Chen W, Li J, Zhu Y, Gao J, Cui L. Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC Systems Biol 2012; 6:68. PMID:22703586; http://dx.doi.org/10.1186/1752-0509-6-68
  • Gasparini P, Cascione L, Fassan M, Lovat F, Guler G, Balci S, Irkkan C, Morrison C, Croce CM, Shapiro CL, et al. microRNA expression profiling identifies a 4 microRNA signature as a novel diagnostic and prognostic biomarker in triple negative breast cancers. Oncotarget 2014; 5(5):1174-1184. PMID:24632568; http://dx.doi.org/10.18632/oncotarget.1682
  • Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432(7014):235-40. PMID:15531877; http://dx.doi.org/10.1038/nature03120
  • Gu Z, Eleswarapu S, Jiang H. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett 2007; 581(5):981-8. PMID:17306260; http://dx.doi.org/10.1016/j.febslet.2007.01.081
  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. 2004. The Drosha-DGCR8 complex in primary microRNA processing. Gen Dev 18(24):3016-27.; PMID:15574589
  • Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocrine Rev 2006; 27(7):728-35. PMID:17018837; http://dx.doi.org/10.1210/er.2006-0037
  • Hinrichs J. Mediterranean milk and milk products. Eur J Nutr 2004; 43 Suppl 1:I/12-17.; PMID:15052494
  • Humphries B, Wang Z, Oom AL, Fisher T, Tan D, Cui Y, Jiang Y, Yang C. MicroRNA-200b targets protein kinase Calpha and suppresses triple-negative breast cancer metastasis. Carcinogenesis 2014; 35(10):2254-63. PMID:24925028; http://dx.doi.org/10.1093/carcin/bgu133
  • Jabed A, Wagner S, McCracken J, Wells DN, Laible G. Targeted microRNA expression in dairy cattle directs production of beta-lactoglobulin-free, high-casein milk. Proc Natl Acad Sci U S A 2012; 109(42):16811-6. PMID:23027958; http://dx.doi.org/10.1073/pnas.1210057109
  • Ji Z, Wang G, Xie Z, Zhang C, Wang J. Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol Biol Rep 2012; 39(10):9361-71. PMID:22763736; http://dx.doi.org/10.1007/s11033-012-1779-5
  • Kadegowda AKG, Bionaz M, Piperova LS, Erdman RA, Loor JJ. Peroxisome proliferator-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J Dairy Sci 2009; 92(9):4276-89. PMID:19700688; http://dx.doi.org/10.3168/jds.2008-1932
  • Kang K, Zhang X, Liu H, Wang Z, Zhong J, Huang Z, Peng X, Zeng Y, Wang Y, Yang Y, et al. A novel real-time PCR assay of microRNAs using S-Poly(T), a specific oligo(dT) reverse transcription primer with excellent sensitivity and specificity. PloS one 2012; 7(11):e48536. PMID:23152780; http://dx.doi.org/10.1371/journal.pone.0048536
  • Kang K, Zhong J, Jiang L, Liu G, Gou CY, Wu Q, Wang Y, Luo J, Gou D. Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing. PloS one 2013; 8(10):e76288. PMID:24098464; http://dx.doi.org/10.1371/journal.pone.0076288
  • Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 2003a; 144(6):2201-07. PMID:12746275; http://dx.doi.org/10.1210/en.2003-0288
  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003b; 425(6956):415-9. PMID:14508493; http://dx.doi.org/10.1038/nature01957
  • Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005; 3(4):e101. PMID:15760270; http://dx.doi.org/10.1371/journal.pbio.0030101
  • Li H, Li T, Wang S, Wei J, Fan J, Li J, Han Q, Liao L, Shao C, Zhao RC. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res 2013; 10(3):313-24. PMID:23399447; http://dx.doi.org/10.1016/j.scr.2012.11.007
  • Lin X, Luo J, Zhang L, Wang W, Gou D. MiR-103 controls milk fat accumulation in goat (Capra hircus) mammary gland during lactation. PloS one 2013a; 8(11):e79258. PMID:24244462; http://dx.doi.org/10.1371/journal.pone.0079258
  • Lin X, Luo J, Zhang L, Zhu J. MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats. Gene Expression 2013b; 16(1):1-13. PMID:24397207.
  • Lin XZ, Luo J, Zhang LP, Wang W, Shi HB, Zhu JJ. MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells. Gene 2013c; 521(1):15-23. PMID:23537996; http://dx.doi.org/10.1016/j.gene.2013.03.050
  • Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Jr., Ory DS, Schaffer JE. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003; 100(6):3077-82. PMID:12629214; http://dx.doi.org/10.1073/pnas.0630588100
  • Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008; 105(36):13556-61. PMID:18768788.; http://dx.doi.org/10.1073/pnas.0803055105
  • Luna P, Bach A, Juarez M, de la Fuente MA. Effect of a diet enriched in whole linseed and sunflower oil on goat milk fatty acid composition and conjugated linoleic acid isomer profile. J Dairy Sci 2008; 91(1):20-28. PMID:18096921; http://dx.doi.org/10.3168/jds.2007-0447
  • Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 2010; 107(27):12228-32. PMID:20566875; http://dx.doi.org/10.1073/pnas.1005191107
  • Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133(2):217-222. PMID:18423194; http://dx.doi.org/10.1016/j.cell.2008.04.001
  • Moreno-Fernandez J, Diaz-Castro J, Alferez MJ, Nestares T, Ochoa JJ, Sanchez-Alcover A, Lopez-Aliaga I. Fermented goat milk consumption improves melatonin levels and influences positively the antioxidant status during nutritional ferropenic anemia recovery. Food & function 2016; 7(2):834-42.; PMID:26662041
  • Peng J, Zhao JS, Shen YF, Mao HG, Xu NY. MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds. Int J Mol Sci 2015; 16(1):1448-65. PMID:25580536; http://dx.doi.org/10.3390/ijms16011448
  • Peterson DG, Matitashvili EA, Bauman DE. The Inhibitory Effect of trans-10, cis-12 CLA on Lipid Synthesis in Bovine Mammary Epithelial Cells Involves Reduced Proteolytic Activation of the Transcription Factor SREBP-1. J Nutrition 2004; 134(10):2523-7. PMID:15465741.
  • Sharma SB, Lin CC, Farrugia MK, McLaughlin SL, Ellis EJ, Brundage KM, Salkeni MA, Ruppert JM. MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1. Mol Cell Biol 2014; 34(22):4143-64. PMID:25202123; http://dx.doi.org/10.1128/MCB.00480-14
  • Shi C, Zhang M, Tong M, Yang L, Pang L, Chen L, Xu G, Chi X, Hong Q, Ni Y, et al. miR-148a is Associated with Obesity and Modulates Adipocyte Differentiation of Mesenchymal Stem Cells through Wnt Signaling. Scientific Rep 2015a; 5:9930. PMID:26001136; http://dx.doi.org/10.1038/srep09930
  • Shi H, Luo J, Zhu J, Li J, Sun Y, Lin X, Zhang L, Yao D, Shi H. PPAR gamma Regulates Genes Involved in Triacylglycerol Synthesis and Secretion in Mammary Gland Epithelial Cells of Dairy Goats. PPAR Res 2013; 2013:310948. PMID:23710163; http://dx.doi.org/10.1155/2013/310948
  • Shi H, Zhu J, Luo J, Cao W, Shi H, Yao D, Li J, Sun Y, Xu H, Yu K, Loor JJ. Genes regulating lipid and protein metabolism are highly expressed in mammary gland of lactating dairy goats. Functional & integrative genomics 2015b; 15(3):309-21.; PMID:25433708
  • Shimoda H, Tanaka J, Kikuchi M, Fukuda T, Ito H, Hatano T, Yoshida T. Effect of polyphenol-rich extract from walnut on diet-induced hypertriglyceridemia in mice via enhancement of fatty acid oxidation in the liver. J Agricultural Food Chem 2009; 57(5):1786-92. PMID:19256553; http://dx.doi.org/10.1021/jf803441c
  • Shirasaki T, Honda M, Shimakami T, Horii R, Yamashita T, Sakai Y, Sakai A, Okada H, Watanabe R, Murakami S, et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J Virol 2013; 87(9):5270-86. PMID:23449803; http://dx.doi.org/10.1128/JVI.03022-12
  • Tabe Y, Hatanaka Y, Nakashiro M, Sekihara K, Yamamoto S, Matsushita H, Kazuno S, Fujimura T, Ikegami T, Nakanaga K, et al. Integrative genomic and proteomic analyses identifies glycerol-3-phosphate acyltransferase as a target of low-dose ionizing radiation in EBV infected-B cells. Int J Radiat Biol 2016; 92(1):24-34. PMID:26809544; http://dx.doi.org/10.3109/09553002.2015.1106021
  • van Iterson M, Bervoets S, de Meijer EJ, Buermans HP, t Hoen PA, Menezes RX, Boer JM. Integrated analysis of microRNA and mRNA expression: adding biological significance to microRNA target predictions. Nucleic Acids Res 2013; 41(15):e146. PMID:23771142; http://dx.doi.org/10.1093/nar/gkt525
  • Vincent M, Oved K, Morag A, Pasmanik-Chor M, Oron-Karni V, Shomron N, Gurwitz D. Genome-wide transcriptomic variations of human lymphoblastoid cell lines: insights from pairwise gene-expression correlations. Pharmacogenomics 2012; 13(16):1893-904. PMID:23215882; http://dx.doi.org/10.2217/pgs.12.179
  • Wang J, Tsouko E, Jonsson P, Bergh J, Hartman J, Aydogdu E, Williams C. miR-206 inhibits cell migration through direct targeting of the actin-binding protein coronin 1C in triple-negative breast cancer. Mol Oncol 2014; 8(8):1690-702. PMID:25074552; http://dx.doi.org/10.1016/j.molonc.2014.07.006
  • Warrington JM, Kim JJ, Stahel P, Cieslar SR, Moorehead RA, Coomber BL, Corredig M, Cant JP. Selenized milk casein in the diet of BALB/c nude mice reduces growth of intramammary MCF-7 tumors. BMC cancer 2013; 13:492. PMID:24152862; http://dx.doi.org/10.1186/1471-2407-13-492
  • Wilbert ML, Yeo GW. Genome-wide approaches in the study of microRNA biology. Wiley Interdiscip Rev Syst Biol Med 2011; 3(5):491-512. PMID:21197653; http://dx.doi.org/10.1002/wsbm.128
  • Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 2007; 91(3):209-17. PMID:17521938; http://dx.doi.org/10.1016/j.ymgme.2007.03.011
  • Wu J, Liao M, Zhu H, Kang K, Mu H, Song W, Niu Z, He X, Bai C, Li G, et al. CD49f-positive testicular cells in Saanen dairy goat were identified as spermatogonia-like cells by miRNA profiling analysis. J Cell Biochem 2014; 115(10):1712-23. PMID:24817091; http://dx.doi.org/10.1002/jcb.24835
  • Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S, Seale P, Fernando P, van Ijcken W, Grosveld F, et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab 2013; 17(2):210-24. PMID:23395168; http://dx.doi.org/10.1016/j.cmet.2013.01.004
  • Yu S, Reddy JK. Transcription coactivators for peroxisome proliferator-activated receptors. Biochimica et biophysica acta 2007; 1771(8):936-51. PMID:17306620; http://dx.doi.org/10.1016/j.bbalip.2007.01.008
  • Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, Lee JH, Khadem S, Ren S, Li S, et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 2008; 134(2):556-67. PMID:18242221; http://dx.doi.org/10.1053/j.gastro.2007.11.037
  • Zhu J, Sun Y, Luo J, Wu M, Li J, Cao Y. Specificity protein 1 regulates gene expression related to fatty acid metabolism in goat mammary epithelial cells. Int J Mol Sci 2015; 16(1):1806-20. PMID:25594872; http://dx.doi.org/10.3390/ijms16011806
  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306(5700):1383-6. PMID:15550674; http://dx.doi.org/10.1126/science.1100747

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.