6,597
Views
125
CrossRef citations to date
0
Altmetric
Review

Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi

, , , &
Pages 421-428 | Received 03 Oct 2016, Accepted 31 Jan 2017, Published online: 20 Mar 2017

References

  • Alfano JR, Collmer A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Ann Rev Phytopathol 2004; 42:385-414; PMID:15283671; http://dx.doi.org/10.1146/annurev.phyto.42.040103.110731
  • Baulcombe D. Plant science. Small RNA–the secret of noble rot. Science 2013; 342:45-6; PMID:24092716; http://dx.doi.org/10.1126/science.1245010
  • Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 2012; 159:266-85; PMID:22392279; http://dx.doi.org/10.1104/pp.111.192641
  • Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 2009; 60:379-406; PMID:19400727; http://dx.doi.org/10.1146/annurev.arplant.57.032905.105346
  • Boller T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009; 324:742-4; PMID:19423812; http://dx.doi.org/10.1126/science.1171647
  • Bonnet E, He Y, Billiau K, Van de Peer Y. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 2010; 26:1566-8; PMID:20430753; http://dx.doi.org/10.1093/bioinformatics/btq233
  • Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 2014; 5:5488; PMID:25421927; http://dx.doi.org/10.1038/ncomms6488
  • Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 2006; 124:803-14; PMID:16497589; http://dx.doi.org/10.1016/j.cell.2006.02.008
  • Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 1998; 16:735-43; PMID:10069079; http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x
  • Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 2010; 11:539-48; PMID:20585331; http://dx.doi.org/10.1038/nrg2812
  • Gachon C, Saindrenan P. Real-time PCR monitoring of fungal development in Arabidopsis thaliana infected by Alternaria brassicicola and Botrytis cinerea. Plant Physiol Biochem 2004; 42:367-71; PMID:15191738; http://dx.doi.org/10.1016/j.plaphy.2004.04.001
  • Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 2005; 43:205-27; PMID:16078883; http://dx.doi.org/10.1146/annurev.phyto.43.040204.135923
  • He P, Shan L, Sheen J. Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol 2007; 9:1385-96; PMID:17451411; http://dx.doi.org/10.1111/j.1462-5822.2007.00944.x
  • Jiang Y, Liang G, Yang S, Yu D. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 2014; 26:230-45; PMID:24424094; http://dx.doi.org/10.1105/tpc.113.117838
  • Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 2012; 5:1375-88; PMID:22930734; http://dx.doi.org/10.1093/mp/sss080
  • Jones JD, Dangl JL. The plant immune system. Nature 2006; 444:323-9; PMID:17108957; http://dx.doi.org/10.1038/nature05286
  • Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 2006; 44:41-60; PMID:16448329; http://dx.doi.org/10.1146/annurev.phyto.44.070505.143436
  • Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. A novel class of `bacteria-induced small RNAs in Arabidopsis. Genes Dev 2007; 21:3123-34; PMID:18003861; http://dx.doi.org/10.1101/gad.1595107
  • Katiyar-Agarwal S, Jin H. Role of small RNAs in host-microbe interactions. Ann Rev Phytopathol 2010; 48:225-46; PMID:20687832; http://dx.doi.org/10.1146/annurev-phyto-073009-114457
  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, Staskawicz BJ, Jin H. A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 2006; 103:18002-7; PMID:17071740; http://dx.doi.org/10.1073/pnas.0608258103
  • Kim KC, Fan B, Chen Z. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant physiology 2006; 142:1180-92; PMID:16963526; http://dx.doi.org/10.1104/pp.106.082487
  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 2006; 312:436-9; PMID:16627744; http://dx.doi.org/10.1126/science.1126088
  • Niu D, Lii YE, Chellappan P, Lei L, Peralta K, Jiang C, Guo J, Coaker G, Jin H. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nat Commun 2016; 7:11324; PMID:27108563; http://dx.doi.org/10.1038/ncomms11324
  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 1996; 8:2309-23; PMID:8989885; http://dx.doi.org/10.1105/tpc.8.12.2309
  • Plaza V, Lagues Y, Carvajal M, Perez-Garcia LA, Mora-Montes HM, Canessa P, Larrondo LF, Castillo L. bcpmr1 encodes a P-type Ca2+/Mn2+-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea. Fungal Genet Biol 2015; 76:36-46; PMID:25677379; http://dx.doi.org/10.1016/j.fgb.2015.01.012
  • Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Ann Rev Plant Biol 2009; 60:485-510; PMID:19519217; http://dx.doi.org/10.1146/annurev.arplant.043008.092111
  • Saitoh Y, Izumitsu K, Morita A, Tanaka C. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea. Mol Genet Genomics 2010; 284:33-43; PMID:20526618; http://dx.doi.org/10.1007/s00438-010-0545-4
  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 2006; 18:1121-33; PMID:16531494; http://dx.doi.org/10.1105/tpc.105.039834
  • Schwessinger B, Ronald PC. Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol 2012; 63:451-82; PMID:22404464; http://dx.doi.org/10.1146/annurev-arplant-042811-105518
  • Stower H. Small RNAs: RNAs attack! Nat Rev Genet 2013; 14:748-9; PMID:24136504; http://dx.doi.org/10.1038/nrg3600
  • Tseng TT, Tyler BM, Setubal JC. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009; 9(Suppl 1):S2; PMID:19278550; http://dx.doi.org/10.1186/1471-2180-9-S1-S2
  • Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T. The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 2006; 18:257-73; PMID:16339855; http://dx.doi.org/10.1105/tpc.105.035576
  • Wang M, Weiberg A, Jin HL. Pathogen small RNAs: a new class of effectors for pathogen attacks. Mol Plant Pathol 2015; 16:219-23; PMID:25764211; http://dx.doi.org/10.1111/mpp.12233
  • Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2016; 2:16151; PMID:27643635; http://dx.doi.org/10.1038/nplants.2016.151
  • Weiberg A, Wang M, Bellinger M, Jin H. Small RNAs: a new paradigm in plant-microbe interactions. Ann Rev Phytopathol 2014; 52:495-516; PMID:25090478; http://dx.doi.org/10.1146/annurev-phyto-102313-045933
  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 2013; 342:118-23; PMID:24092744; http://dx.doi.org/10.1126/science.1239705
  • Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, Coffey M, et al. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 2011a; 75:93-105; PMID:21153682; http://dx.doi.org/10.1007/s11103-010-9710-8
  • Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin H. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393( *)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 2011b; 42:356-66; PMID:21549312; http://dx.doi.org/10.1016/j.molcel.2011.04.010
  • Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 2006; 48:592-605; PMID:17059405; http://dx.doi.org/10.1111/j.1365-313X.2006.02901.x
  • Zipfel C. Plant pattern-recognition receptors. Trends Immunol 2014; 35:345-51; PMID:24946686; http://dx.doi.org/10.1016/j.it.2014.05.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.