5,161
Views
79
CrossRef citations to date
0
Altmetric
Review

The modified base isopentenyladenosine and its derivatives in tRNA

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1197-1208 | Received 15 Dec 2016, Accepted 08 Feb 2017, Published online: 17 Mar 2017

References

  • Bjork GR, Ericson JU, Gustafsson CE, Hagervall TG, Jonsson YH, Wikstrom PM. Transfer RNA modification. Annu Rev Biochem 1987; 56:263-87; PMID:3304135; http://dx.doi.org/10.1146/annurev.bi.56.070187.001403
  • El Yacoubi B, Bailly M, de Crecy-Lagard V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet 2012; 46:69-95; PMID:22905870; http://dx.doi.org/10.1146/annurev-genet-110711-155641
  • Persson BC, Esberg B, Olafsson O, Bjork GR. Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 1994; 76:1152-60; PMID:7748950; http://dx.doi.org/10.1016/0300-9084(94)90044-2
  • Soll D. Enzymatic modification of transfer RNA. Science 1971; 173:293-9; PMID:4934576; http://dx.doi.org/10.1126/science.173.3994.293
  • Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016; 44:8020-40; PMID:27448410; http://dx.doi.org/10.1093/nar/gkw608
  • Murphy FV, Ramakrishnan V, Malkiewicz A, Agris PF. The role of modifications in codon discrimination by tRNA(Lys) UUU. Nat Struct Mol Biol 2004; 11:1186-91; http://dx.doi.org/10.1038/nsmb861
  • Weixlbaumer AM,   F. V. IV. Crystallographic Studies of Decoding by Modified Bases: Correlation of Structure and Function. In: Grosjean H, ed. DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution: Landes Bioscience, 2009:493-508
  • Suzuki T, Suzuki T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res 2014; 42:7346-57; PMID:24831542; http://dx.doi.org/10.1093/nar/gku390
  • Deutsch C, El Yacoubi B, de Crecy-Lagard V, Iwata-Reuyl D. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J Biol Chem 2012; 287:13666-73; PMID:22378793; http://dx.doi.org/10.1074/jbc.M112.344028
  • Perche-Letuvee P, Molle T, Forouhar F, Mulliez E, Atta M. Wybutosine biosynthesis: structural and mechanistic overview. RNA Biol 2014; 11:1508-18; PMID:25629788; http://dx.doi.org/10.4161/15476286.2014.992271
  • Lamichhane TN, Mattijssen S, Maraia RJ. Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor. Mol Cell Biol 2013; 33:4900-8; PMID:24126054; http://dx.doi.org/10.1128/MCB.01041-13
  • Motorin Y, Bec G, Tewari R, Grosjean H. Transfer RNA recognition by the Escherichia coli Delta(2)-isopentenyl-pyrophosphate:tRNA Delta 2-isopentenyl transferase: Dependence on the anticodon arm structure. RNA 1997; 3:721-33; PMID:9214656
  • Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 2009; 37:D159-62; PMID:18957446; http://dx.doi.org/10.1093/nar/gkn772
  • Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM. MODOMICS: a database of RNA modification pathways. Nucleic Acids Res 2006; 34:D145-9; PMID:16381833; http://dx.doi.org/10.1093/nar/gkj084
  • Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 2013; 41:D262-7; PMID:23118484; http://dx.doi.org/10.1093/nar/gks1007
  • Zachau HG, Dutting D, Feldmann H. Nucleotide sequences of two serine-specific transfer ribonucleic acids. Angew Chem Int Ed Engl 1966; 5:422; PMID:4956644; http://dx.doi.org/10.1002/anie.196604221
  • Hall RH, Robins MJ, Stasiuk L, Thedford R. Isolation of N6-(Gamma Gamma-Dimethylallyl)Adenosine from Soluble Ribonucleic Acid. JACS 1966; 88:2614; http://dx.doi.org/10.1021/ja00963a061
  • Bartz J, Soll D, Burrows WJ, Skoog F. Identification of Cytokinin-Active Ribonucleosides in Pure Escherichia-Coli Transfer Rna Species. P Natl Acad Sci USA 1970; 67:1448; PMID:4922291; http://dx.doi.org/10.1073/pnas.67.3.1448
  • Bartz JK, Kline LK, Soll D. N6-(Delta2-Isopentenyl)Adenosine - Biosynthesis in-Vitro in Transfer Rna by an Enzyme Purified from Escherichia-Coli. Biochem Bioph Res Co 1970; 40:1481; PMID:4326583; http://dx.doi.org/10.1016/0006-291X(70)90035-5
  • Agris PF, Armstrong DJ, Schafer KP, Soll D. Maturation of a Hypermodified Nucleoside in Transfer-Rna. Nucleic Acids Res 1975; 2:691-8; PMID:49880; http://dx.doi.org/10.1093/nar/2.5.691
  • Caillet J, Droogmans L. Molecular-Cloning of the Escherichia-Coli Miaa Gene Involved in the Formation of Delta-2-Isopentenyl Adenosine in Transfer-Rna. J Bacteriol 1988; 170:4147-52; PMID:3045085; http://dx.doi.org/10.1128/jb.170.9.4147-4152.1988
  • Eisenberg SP, Yarus M, Soll L. The effect of an Escherichia coli regulatory mutation on transfer RNA structure. J Mol Biol 1979; 135:111-26; PMID:93644; http://dx.doi.org/10.1016/0022-2836(79)90343-7
  • Landgraf BJ, McCarthy EL, Booker SJ. Radical S-Adenosylmethionine Enzymes in Human Health and Disease. Annu Rev Biochem 2016; 85:485-514; PMID:27145839; http://dx.doi.org/10.1146/annurev-biochem-060713-035504
  • Laten H, Gorman J, Bock RM. Isopentenyladenosine deficient tRNA from an antisuppressor mutant of Saccharomyces cerevisiae. Nucleic Acids Res 1978; 5:4329-42; PMID:364426; http://dx.doi.org/10.1093/nar/5.11.4329
  • Dihanich ME, Najarian D, Clark R, Gillman EC, Martin NC, Hopper AK. Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:177-84; PMID:3031456; http://dx.doi.org/10.1128/MCB.7.1.177
  • Connolly DM, Winkler ME. Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J Bacteriol 1989; 171:3233-46; PMID:2656644; http://dx.doi.org/10.1128/jb.171.6.3233-3246.1989
  • Golovko A, Hjalm G, Sitbon F, Nicander B. Cloning of a human tRNA isopentenyl transferase. Gene 2000; 258:85-93; PMID:11111046; http://dx.doi.org/10.1016/S0378-1119(00)00421-2
  • Reiter V, Matschkal DM, Wagner M, Globisch D, Kneuttinger AC, Muller M, Carell T. The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA. Nucleic Acids Res 2012; 40:6235-40; PMID:22422838; http://dx.doi.org/10.1093/nar/gks240
  • Arragain S, Handelman SK, Forouhar F, Wei FY, Tomizawa K, Hunt JF, Douki T, Fontecave M, Mulliez E, Atta M. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J Biol Chem 2010; 285:28425-33; PMID:20584901; http://dx.doi.org/10.1074/jbc.M110.106831
  • Armstrong DJ, Burrows WJ, Skoog F, Roy KL, Soll D. Cytokinins - Distribution in Transfer Rna Species of Escherichia Coli. Proc Natl Acad Sci USA 1969; 63:834; PMID:4899879; http://dx.doi.org/10.1073/pnas.63.3.834
  • Schön A, Böck A, Ott G, Sprinzl M, Söll D. The selenocysteine-inserting opal suppressor serine tRNA from E. coli is highly unusual in structure and modification. Nucleic Acids Res 1989; 17:7159-65; PMID:2529478; http://dx.doi.org/10.1093/nar/17.18.7159
  • Gefter ML, Russell RL. Role of Modifications in Tyrosine Transfer Rna - a Modified Base Affecting Ribosome Binding. J Mol Biol 1969; 39:145; PMID:4938812; http://dx.doi.org/10.1016/0022-2836(69)90339-8
  • Buck M, Griffiths E. Iron Mediated Methylthiolation of Transfer-Rna as a Regulator of Operon Expression in Escherichia-Coli. Nucleic Acids Res 1982; 10:2609-24; PMID:7043398; http://dx.doi.org/10.1093/nar/10.8.2609
  • Mclennan BD, Buck M, Humphreys J, Griffiths E. Iron-Related Modification of Bacterial Transfer-Rna. Nucleic Acids Res 1981; 9:2629-40; PMID:6792594; http://dx.doi.org/10.1093/nar/9.11.2629
  • Buck M, Griffiths E. Regulation of Aromatic Amino-Acid-Transport by Transfer-Rna - Role of 2-Methylthio-N6-(Delta-2-Isopentenyl)-Adenosine. Nucleic Acids Res 1981; 9:401-14; PMID:7010315; http://dx.doi.org/10.1093/nar/9.2.401
  • Griffiths E, Humphreys J. Alterations in Transfer-Rnas Containing 2-Methylthio-N6-(Delta-2-Isopentenyl)-Adenosine during Growth of Enteropathogenic Escherichia-Coli in Presence of Iron-Binding Proteins. Euro J Biochem 1978; 82:503-13; PMID:342239; http://dx.doi.org/10.1111/j.1432-1033.1978.tb12044.x
  • Buck M, Ames BN. A modified nucleotide in Transfer-Rna as a possible regulator of aerobiosis - synthesis of Cis-2-methylthioribosylzeatin in the transfer-Rna of salmonella. Cell 1984; 36:523-31; PMID:6362893; http://dx.doi.org/10.1016/0092-8674(84)90245-9
  • Diaz I, Pedersen S, Kurland CG. Effects of miaA on translation and growth rates. Mol Gen Genet 1987; 208:373-6; PMID:3312947; http://dx.doi.org/10.1007/BF00328126
  • Ericson JU, Bjork GR. Pleiotropic effects induced by modification deficiency next to the anticodon of transfer-Rna from salmonella-typhimurium-Lt2. J Bacteriol 1986; 166:1013-21; PMID:2423501; http://dx.doi.org/10.1128/jb.166.3.1013-1021.1986
  • Bouadloun F, Srichaiyo T, Isaksson LA, Bjork GR. Influence of modification next to the anticodon in Transfer-Rna on codon context-sensitivity of translational suppression and accuracy. J Bacteriol 1986; 166:1022-7; PMID:3086285; http://dx.doi.org/10.1128/jb.166.3.1022-1027.1986
  • Diaz I, Ehrenberg M. Ms2i6a deficiency enhances proofreading in translation. J Mol Biol 1991; 222:1161-71; PMID:1762149; http://dx.doi.org/10.1016/0022-2836(91)90599-2
  • Urbonavicius J, Qian O, Durand JMB, Hagervall TG, Bjork GR. Improvement of reading frame maintenance is a common function for several tRNA modifications. Embo J 2001; 20:4863-73; PMID:11532950; http://dx.doi.org/10.1093/emboj/20.17.4863
  • Durand JMB, Bjork GR, Kuwae A, Yoshikawa M, Sasakawa C. The modified nucleoside 2-methylthio-N-6-isopentenyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes. J Bacteriol 1997; 179:5777-82; PMID:9294434; http://dx.doi.org/10.1128/jb.179.18.5777-5782.1997
  • Duechler M, Leszczynska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95; PMID:27094388; http://dx.doi.org/10.1007/s00018-016-2217-y
  • Endres L, Dedon PC, Begley TJ. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol 2015; 12:603-14; PMID:25892531; http://dx.doi.org/10.1080/15476286.2015.1031947
  • Kolmsee T, Hengge R. Rare codons play a positive role in the expression of the stationary phase sigma factor RpoS (sigma(S)) in Escherichia coli. RNA Biol 2011; 8:913-21; PMID:21788735; http://dx.doi.org/10.4161/rna.8.5.16265
  • Thompson KM, Gottesman S. The MiaA tRNA modification enzyme is necessary for robust RpoS expression in Escherichia coli. J Bacteriol 2014; 196:754-61; PMID:24296670; http://dx.doi.org/10.1128/JB.01013-13
  • Aubee JI, Olu M, Thompson KM. The i6A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during rpoS and iraP translation. RNA 2016; 22:729-42; PMID:26979278; http://dx.doi.org/10.1261/rna.053165.115
  • Martin NC, Hopper AK. Isopentenylation of both cytoplasmic and mitochondrial tRNA is affected by a single nuclear mutation. J Biol Chem 1982; 257:10562-5; PMID:7050116
  • Najarian D, Dihanich ME, Martin NC, Hopper AK. DNA sequence and transcript mapping of MOD5: features of the 5′ region which suggest two translational starts. Mol Cell Biol 1987; 7:185-91; PMID:3031457; http://dx.doi.org/10.1128/MCB.7.1.185
  • Slusher LB, Gillman EC, Martin NC, Hopper AK. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc Natl Acad Sci U S A 1991; 88:9789-93; PMID:1946403; http://dx.doi.org/10.1073/pnas.88.21.9789
  • Gillman EC, Slusher LB, Martin NC, Hopper AK. MOD5 translation initiation sites determine N6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Mol Cell Biol 1991; 11:2382-90; PMID:1850093; http://dx.doi.org/10.1128/MCB.11.5.2382
  • Boguta M, Hunter LA, Shen WC, Gillman EC, Martin NC, Hopper AK. Subcellular locations of MOD5 proteins: mapping of sequences sufficient for targeting to mitochondria and demonstration that mitochondrial and nuclear isoforms commingle in the cytosol. Mol Cell Biol 1994; 14:2298-306; PMID:8139535; http://dx.doi.org/10.1128/MCB.14.4.2298
  • Tolerico LH, Benko AL, Aris JP, Stanford DR, Martin NC, Hopper AK. Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations. Genetics 1999; 151:57-75; PMID:9872948
  • Lamichhane TN, Arimbasseri AG, Rijal K, Iben JR, Wei FY, Tomizawa K, Maraia RJ. Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA. RNA 2016; 22:583-96; PMID:26857223; http://dx.doi.org/10.1261/rna.054064.115
  • Egel R, Kohli J, Thuriaux P, Wolf K. Genetics of the fission yeast Schizosaccharomyces pombe. Ann Rev Genet 1980; 14:77-108; PMID:7011176; http://dx.doi.org/10.1146/annurev.ge.14.120180.000453
  • Janner F, Vogeli G, Fluri R. The antisuppressor strain sin1 of Schizosaccharomyces pombe lacks the modification isopentenyladenosine in transfer RNA. J Mol Biol 1980; 139:207-19; PMID:7411631; http://dx.doi.org/10.1016/0022-2836(80)90305-8
  • Kohli J, Kwong T, Altruda F, Soll D, Wahl G. Characterization of a UGA-suppressing serine tRNA from Schizosaccharomyces pombe with the help of a new in vitro assay system for eukaryotic suppressor tRNAs. J Biol Chem 1979; 254:1546-51; PMID:762155
  • Rafalski A, Kohli J, Agris P, Soll D. The nucleotide sequence of a UGA suppressor serine tRNA from Schizosaccharomyces pombe. Nucleic Acids Res 1979; 6:2683-95; PMID:461200; http://dx.doi.org/10.1093/nar/6.8.2683
  • Lamichhane TN, Blewett NH, Maraia RJ. Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases. RNA 2011; 17:1846-57; PMID:21873461; http://dx.doi.org/10.1261/rna.2628611
  • Lamichhane TN, Blewett NH, Crawford AK, Cherkasova VA, Iben JR, Begley TJ, Farabaugh PJ, Maraia RJ. Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast. Mol Cell Biol 2013; 33:2918-29; PMID:23716598; http://dx.doi.org/10.1128/MCB.00278-13
  • Takahara T, Maeda T. TORC1 of fission yeast is rapamycin-sensitive. Genes Cells 2012; 17:698-708; PMID:22762302; http://dx.doi.org/10.1111/j.1365-2443.2012.01618.x
  • Lemieux J, Lakowski B, Webb A, Meng Y, Ubach A, Bussiere F, Barnes T, Hekimi S. Regulation of physiological rates in Caenorhabditis elegans by a tRNA-modifying enzyme in the mitochondria. Genetics 2001; 159:147-57; PMID:11560893
  • Lakowski B, Hekimi S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 1996; 272:1010-3; PMID:8638122; http://dx.doi.org/10.1126/science.272.5264.1010
  • Braeckman BP, Houthoofd K, De Vreese A, Vanfleteren JR. Apparent uncoupling of energy production and consumption in long-lived Clk mutants of Caenorhabditis elegans. Curr Biol 1999; 9:493-6; PMID:10330373; http://dx.doi.org/10.1016/S0960-9822(99)80216-4
  • Suzuki T, Nagao A, Suzuki T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 2011; 45:299-329; PMID:21910628; http://dx.doi.org/10.1146/annurev-genet-110410-132531
  • Fradejas N, Carlson BA, Rijntjes E, Becker NP, Tobe R, Schweizer U. Mammalian Trit1 is a tRNA([Ser]Sec)-isopentenyl transferase required for full selenoprotein expression. Biochem J 2013; 450:427-32; PMID:23289710; http://dx.doi.org/10.1042/BJ20121713
  • Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem 1989; 264:9724-7; PMID:2498338
  • Schweizer U, Fradejas-Villar N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J 2016; 30(11):3669-81; PMID:27473727; http://dx.doi.org/10.1096/fj.201600424
  • Carlson BA, Novoselov SV, Kumaraswamy E, Lee BJ, Anver MR, Gladyshev VN, Hatfield DL. Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function. J Biol Chem 2004; 279:8011-7; PMID:14660662; http://dx.doi.org/10.1074/jbc.M310470200
  • Schweizer U, Streckfuss F, Pelt P, Carlson BA, Hatfield DL, Köhrle J, Schomburg L. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem J 2005; 386:221-6; PMID:15638810; http://dx.doi.org/10.1042/BJ20041973
  • Carlson BA, Schweizer U, Perella C, Shrimali RK, Feigenbaum L, Shen L, Speransky S, Floss T, Jeong SJ, Watts J, et al. The selenocysteine tRNA STAF-binding region is essential for adequate selenocysteine tRNA status, selenoprotein expression and early age survival of mice. Biochem J 2009; 418:61-71; PMID:18973473; http://dx.doi.org/10.1042/BJ20081304
  • Schoenmakers E, Carlson B, Agostini M, Moran C, Rajanayagam O, Bochukova E, Tobe R, Peat R, Gevers E, Muntoni F, et al. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J Clin Invest 2016; 126:992-6; PMID:26854926; http://dx.doi.org/10.1172/JCI84747
  • Diamond AM, Choi IS, Crain PF, Hashizume T, Pomerantz SC, Cruz R, Steer CJ, Hill KE, Burk RF, McCloskey JA, et al. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine transfer RNA[Ser]Sec. J Biol Chem 1993; 268:14215-23; PMID:8314785
  • Carlson BA, Moustafa ME, Sengupta A, Schweizer U, Shrimali R, Rao M, Zhong N, Wang S, Feigenbaum L, Lee BJ, et al. Selective restoration of the selenoprotein population in a mouse hepatocyte selenoproteinless background with different mutant selenocysteine tRNAs lacking Um34. J Biol Chem 2007; 282:32591-602; PMID:17848557; http://dx.doi.org/10.1074/jbc.M707036200
  • Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DL, Faust JR. Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine. J Biol Chem 2000; 275:28110-9; PMID:10821829
  • Howard MT, Carlson BA, Anderson CB, Hatfield DL. Translational redefinition of UGA codons is regulated by selenium availability. J Biol Chem 2013; 288:19401-13; PMID:23696641; http://dx.doi.org/10.1074/jbc.M113.481051
  • Ganichkin OM, Anedchenko EA, Wahl MC. Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse. PLoS One 2011; 6:e20032; PMID:21629646; http://dx.doi.org/10.1371/journal.pone.0020032
  • Cabello-Villegas J, Winkler ME, Nikonowicz EP. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). J Mol Biol 2002; 319:1015-34; PMID:12079344; http://dx.doi.org/10.1016/S0022-2836(02)00382-0
  • Weixlbaumer A, Murphy FV 4th, Dziergowska A, Malkiewicz A, Vendeix FA, Agris PF, Ramakrishnan V. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat Struct Mol Biol 2007; 14:498-502; PMID:17496902; http://dx.doi.org/10.1038/nsmb1242
  • Smaldino PJ, Read DF, Pratt-Hyatt M, Hopper AK, Engelke DR. The cytoplasmic and nuclear populations of the eukaryote tRNA-isopentenyl transferase have distinct functions with implications in human cancer. Gene 2015; 556:13-8; PMID:25261850; http://dx.doi.org/10.1016/j.gene.2014.09.049
  • Spinola M, Galvan A, Pignatiello C, Conti B, Pastorino U, Nicander B, Paroni R, Dragani TA. Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene 2005; 24:5502-9; PMID:15870694; http://dx.doi.org/10.1038/sj.onc.1208687
  • Torres AG, Batlle E, de Pouplana LR. Role of tRNA modifications in human diseases. Trends Mol Med 2014; 20:306-14; PMID:24581449; http://dx.doi.org/10.1016/j.molmed.2014.01.008
  • Yarham JW, Lamichhane TN, Pyle A, Mattijssen S, Baruffini E, Bruni F, Donnini C, Vassilev A, He L, Blakely EL, et al. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet 2014; 10:e1004424; PMID:24901367; http://dx.doi.org/10.1371/journal.pgen.1004424
  • Wei FY, Zhou B, Suzuki T, Miyata K, Ujihara Y, Horiguchi H, Takahashi N, Xie P, Michiue H, Fujimura A, et al. Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans. Cell Metab 2015; 21:428-42; PMID:25738458; http://dx.doi.org/10.1016/j.cmet.2015.01.019
  • Steinthorsdottir V, Reynisdottir I, Thorleifsson G, Ghosh S, Benediktsson R, Sigurdsson G, et al. The recently identified type 2 diabetes gene CDKAL1 is widely expressed and its expression in pancreatic beta cells is affected by glucose concentration. Diabetologia 2007; 50(Suppl 1): S129; http://dx.doi.org/10.1007/s00125-007-0809-7
  • Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007; 39:770-5; PMID:17460697; http://dx.doi.org/10.1038/ng2043
  • Wei FY, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, Fujimura A, Matsui H, Atta M, Michiue H, Fontecave M, et al. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J Clin Invest 2011; 121:3598-608; PMID:21841312; http://dx.doi.org/10.1172/JCI58056
  • Thiaville PC, Iwata-Reuyl D, de Crecy-Lagard V. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t(6)A), a universal modification of tRNA. RNA Biol 2014; 11:1529-39; PMID:25629598; http://dx.doi.org/10.4161/15476286.2014.992277
  • Rodriguez V, Chen Y, Elkahloun A, Dutra A, Pak E, Chandrasekharappa S. Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer. Genes Chromosomes Cancer 2007; 46:694-707; PMID:17440925; http://dx.doi.org/10.1002/gcc.20454
  • Chimnaronk S, Forouhar F, Sakai J, Yao M, Tron CM, Atta M, Fontecave M, Hunt JF, Tanaka I. Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon. Biochemistry 2009; 48:5057-65; PMID:19435325; http://dx.doi.org/10.1021/bi900337d
  • Seif E, Hallberg BM. RNA-protein mutually induced fit: structure of Escherichia coli isopentenyl-tRNA transferase in complex with tRNA(Phe). J Biol Chem 2009; 284:6600-4; PMID:19158097; http://dx.doi.org/10.1074/jbc.C800235200
  • Zhou C, Huang RH. Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: insight into tRNA recognition and reaction mechanism. Proc Natl Acad Sci U S A 2008; 105:16142-7; PMID:18852462; http://dx.doi.org/10.1073/pnas.0805680105
  • Moore JA, Poulter CD. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: A binding mechanism for recombinant enzyme. Biochemistry 1997; 36:604-14; PMID:9012675; http://dx.doi.org/10.1021/bi962225l
  • Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, Lahrmann U, Zhao Q, Zheng Y, Zhao Y, et al. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 2015; 31:3359-61; PMID:26069263; http://dx.doi.org/10.1093/bioinformatics/btv362
  • Benko AL, Vaduva G, Martin NC, Hopper AK. Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression. Proc Natl Acad Sci U S A 2000; 97:61-6; PMID:10618371; http://dx.doi.org/10.1073/pnas.97.1.61
  • Kaminska J, Grabinska K, Kwapisz M, Sikora J, Smagowicz WJ, Palamarczyk G, Zoładek T, Boguta M. The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis. FEMS Yeast Res 2002; 2:31-7; PMID:12702319; http://dx.doi.org/10.1111/j.1567-1364.2002.tb00066.x
  • Moosmann B, Behl C. Selenoprotein synthesis and side-effects of statins. Lancet 2004; 363:892-4; PMID:15031036; http://dx.doi.org/10.1016/S0140-6736(04)15739-5
  • Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bonnemann C, Jungbluth H, Straub V, Villanova M, Leroy JP, et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 2002; 71:739-49; PMID:12192640; http://dx.doi.org/10.1086/342719
  • Ferreiro A, Ceuterick-de Groote C, Marks JJ, Goemans N, Schreiber G, Hanefeld F, Fardeau M, Martin JJ, Goebel HH, Richard P, et al. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 2004; 55:676-86; PMID:15122708; http://dx.doi.org/10.1002/ana.20077
  • Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Roy SQ, Merlini L, Romero N, Estournet B, Desguerre I, Chaigne D, et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 2001; 29:17-8; PMID:11528383; http://dx.doi.org/10.1038/ng713
  • Pratt-Hyatt M, Pai DA, Haeusler RA, Wozniak GG, Good PD, Miller EL, McLeod IX, Yates JR 3rd, Hopper AK, Engelke DR. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing. Proc Natl Acad Sci U S A 2013; 110:E3081-9; PMID:23898186; http://dx.doi.org/10.1073/pnas.1219946110
  • Suzuki G, Shimazu N, Tanaka M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 2012; 336:355-9; PMID:22517861; http://dx.doi.org/10.1126/science.1219491
  • Yamaizumi Z, Kuchino Y, Harada F, Nishimura S, McCloskey JA. Primary structure of Escherichia coli tRNA UUR Leu. Presence of an unknown adenosine derivative in the first position of the anticodon which recognizes the UU codon series. J Biol Chem 1980; 255:2220-5; PMID:6986390
  • Barrell BG, Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett 1969; 3:275-8; PMID:11947028; http://dx.doi.org/10.1016/0014-5793(69)80157-2
  • Ishikura H, Yamada Y, Nishimura S. The nucleotide sequence of a serine tRNA from Escherichia coli. FEBS Lett 1971; 16:68-70; PMID:11945903; http://dx.doi.org/10.1016/0014-5793(71)80688-9
  • Hirsh D. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol 1971; 58:439-58; PMID:4933412; http://dx.doi.org/10.1016/0022-2836(71)90362-7
  • Goodman HM, Abelson JN, Landy A, Zadrazil S, Smith JD. The nucleotide sequences of tyrosine transfer RNAs of Escherichia coli. Eur J Biochem 1970; 13:461-83; PMID:4315419; http://dx.doi.org/10.1111/j.1432-1033.1970.tb00950.x
  • Etcheverry T, Colby D, Guthrie C. A precursor to a minor species of yeast tRNASer contains an intervening sequence. Cell 1979; 18:11-26; PMID:389430; http://dx.doi.org/10.1016/0092-8674(79)90349-0
  • Madison JT, Kung HK. Large oligonucleotides isolated from yeast tyrosine transfer ribonucleic acid after partial digestion with ribonuclease T1. J Biol Chem 1967; 242:1324-30; PMID:6023574
  • Keith G, Roy A, Ebel JP, Dirheimer G. The nucleotide sequences of two tryptophane-tRNAs from brewer's yeast. FEBS Lett 1971; 17:306-8; PMID:11946053; http://dx.doi.org/10.1016/0014-5793(71)80171-0
  • Wilson RK, Roe BA. Presence of the hypermodified nucleotide N6-(delta 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA. Proc Natl Acad Sci U S A 1989; 86:409-13; PMID:2643111; http://dx.doi.org/10.1073/pnas.86.2.409
  • Bouadloun F, Srichaiyo T, Isaksson LA, Bjork GR. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J Bacteriol 1986; 166:1022-7; PMID:3086285; http://dx.doi.org/10.1128/jb.166.3.1022-1027.1986
  • Thiaville PC, Legendre R, Rojas-Benitez D, Baudin-Baillieu A, Hatin I, Chalancon G, Glavic A, Namy O, de Crécy-Lagard V. Global translational impacts of the loss of the tRNA modification t6A in yeast. Microbial Cell 2016; 3:29-45; PMID:26798630; http://dx.doi.org/10.15698/mic2016.01.473
  • Durant PC, Bajji AC, Sundaram M, Kumar RK, Davis DR. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A. Biochemistry 2005; 44:8078-89; PMID:15924427; http://dx.doi.org/10.1021/bi050343f
  • Subramanian M, Srinivasan T, Sudarsanam D. Examining the Gm18 and m(1)G Modification Positions in tRNA Sequences. Genomics Inform 2014; 12:71-5; PMID:25031570; http://dx.doi.org/10.5808/GI.2014.12.2.71
  • Wang M, Peng Y, Zheng J, Zheng B, Jin X, Liu H, Wang Y, Tang X, Huang T, Jiang P, et al. A deafness-associated tRNAAsp mutation alters the m1G37 modification, aminoacylation and stability of tRNAAsp and mitochondrial function. Nucleic Acids Res 2016; 44:10974-85; PMID:27536005; http://dx.doi.org/10.1093/nar/gkw726
  • Tuorto F, Lyko F. Genome recoding by tRNA modifications. Open Biol 2016; 6:pii: 160287; PMID:27974624; http://dx.doi.org/10.1098/rsob.160287
  • Waas WF, Druzina Z, Hanan M, Schimmel P. Role of a tRNA base modification and its precursors in frameshifting in eukaryotes. J Biol Chem 2007; 282:26026-34; PMID:17623669; http://dx.doi.org/10.1074/jbc.M703391200