872
Views
7
CrossRef citations to date
0
Altmetric
Review - Solicited

Minimal requirements for reverse polymerization and tRNA repair by tRNAHis guanylyltransferase

, , , , , , , & show all
Pages 614-622 | Received 21 Jul 2017, Accepted 22 Aug 2017, Published online: 29 Sep 2017

References

  • Heinemann IU, Nakamura A, O'Donoghue P, Eiler D, Söll D. tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res. 2012;40:333–44. doi:10.1093/nar/gkr696.
  • Heinemann IU, O'Donoghue P, Madinger C, Benner J, Randau L, Noren CJ, Söll D. The appearance of pyrrolysine in tRNAHis guanylyltransferase by neutral evolution. Proc Natl Acad Sci U S A. 2009;106:21103–8. doi:10.1073/pnas.0912072106.
  • Heinemann IU, Randau L, Tomko RJ, Jr., Söll D. 3'-5' tRNAHis guanylyltransferase in bacteria. FEBS Lett. 2010;584:3567–72. doi:10.1016/j.febslet.2010.07.023.
  • Hyde SJ, Eckenroth BE, Smith BA, Eberley WA, Heintz NH, Jackman JE, Doublie S. tRNAHis guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases. Proc Natl Acad Sci U S A. 2010;107:20305–10. doi:10.1073/pnas.1010436107.
  • Lee K, Lee EH, Son J, Hwang KY. Crystal structure of tRNAHis guanylyltransferase from Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2017. doi:10.1016/j.bbrc.2017.06.054.
  • Nakamura A, Nemoto T, Heinemann IU, Yamashita K, Sonoda T, Komoda K, Tanaka I, Söll D, Yao M. Structural basis of reverse nucleotide polymerization. Proc Natl Acad Sci USA. 2013;110:20970–5. doi:10.1073/pnas.1321312111.
  • Hyde SJ, Rao BS, Eckenroth BE, Jackman JE, Doublie S. Structural studies of a bacterial tRNAHIS guanylyltransferase (Thg1)-like protein, with nucleotide in the activation and nucleotidyl transfer sites. PLoS One. 2013;8:e67465. doi:10.1371/journal.pone.0067465.
  • Heinemann IU, Söll D, Randau L. Transfer RNA processing in archaea: unusual pathways and enzymes. FEBS Lett. 2010;584:303–9. doi:10.1016/j.febslet.2009.10.067.
  • Gu W, Jackman JE, Lohan AJ, Gray MW, Phizicky EM. tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5' end of tRNAHis. Genes Dev. 2003;17:2889–901. doi:10.1101/gad.1148603.
  • Jackman JE, Phizicky EM. tRNAHis guanylyltransferase adds G-1 to the 5' end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. RNA. 2006;12:1007–14. doi:10.1261/rna.54706.
  • Francklyn C, Schimmel P. Enzymatic aminoacylation of an eight-base-pair microhelix with histidine. Proc Natl Acad Sci U S A 1990;87:8655–9. doi:10.1073/pnas.87.21.8655.
  • Long Y, Abad MG, Olson ED, Carrillo EY, Jackman JE. Identification of distinct biological functions for four 3'-5' RNA polymerases. Nucleic Acids Res. 2016;44:8395–406. doi:10.1093/nar/gkw681.
  • Kimura S, Suzuki T, Chen M, Kato K, Yu J, Nakamura A, Tanaka I, Yao M. Template-dependent nucleotide addition in the reverse (3'-5') direction by Thg1-like protein. Sci Adv. 2016;2:e1501397. doi:10.1126/sciadv.1501397.
  • Long Y, Jackman JE. In vitro substrate specificities of 3'-5' polymerases correlate with biological outcomes of tRNA 5'-editing reactions. FEBS Lett. 2015;589:2124–30. doi:10.1016/j.febslet.2015.06.028.
  • Rao BS, Maris EL, Jackman JE. tRNA 5'-end repair activities of tRNAHis guanylyltransferase (Thg1)-like proteins from Bacteria and Archaea. Nucleic Acids Res. 2011;39:1833–42. doi:10.1093/nar/gkq976.
  • Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE. A role for tRNAHis guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5'-tRNA editing. RNA. 2011;17:613–23. doi:10.1261/rna.2517111.
  • Abad MG, Rao BS, Jackman JE. Template-dependent 3'-5' nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proc Natl Acad Sci U S A. 2010;107:674–9. doi:10.1073/pnas.0910961107.
  • Smith BA, Jackman JE. Saccharomyces cerevisiae Thg1 Uses 5'-Pyrophosphate Removal To Control Addition of Nucleotides to tRNAHis. Biochemistry. 2014;53:1380–91. doi:10.1021/bi4014648.
  • Smith BA, Jackman JE. Kinetic analysis of 3'-5' nucleotide addition catalyzed by eukaryotic tRNAHis guanylyltransferase. Biochemistry. 2012;51:453–65. doi:10.1021/bi201397f.
  • Jackman JE, Gott JM, Gray MW. Doing it in reverse: 3'-to-5' polymerization by the Thg1 superfamily. RNA. 2012;18:886–99. doi:10.1261/rna.032300.112.
  • Dreyfus DH, Tompkins SM, Fuleihan R, Ghoda LY. Gene silencing in the therapy of influenza and other respiratory diseases: Targeting to RNase P by use of External Guide Sequences (EGS). Biologics: targets & therapy. 2007;1:425–32.
  • Nakashima A, Takaku H, Shibata HS, Negishi Y, Takagi M, Tamura M, Nashimoto M. Gene silencing by the tRNA maturase tRNase ZL under the direction of small-guide RNA. Gene therapy. 2007;14:78–85. doi:10.1038/sj.gt.3302841.
  • Jackman JE, Phizicky EM. Identification of critical residues for G-1 addition and substrate recognition by tRNAHis guanylyltransferase. Biochemistry. 2008;47:4817–25. doi:10.1021/bi702517q.
  • Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54–7. doi:10.1093/nar/gkw413.
  • Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43. doi:10.1128/MMBR.65.1.1-43.2001.
  • Abad MG, Long Y, Kinchen RD, Schindel ET, Gray MW, Jackman JE. Mitochondrial tRNA 5'-editing in Dictyostelium discoideum and Polysphondylium pallidum. J Biol Chem. 2014;289:15155–65. doi:10.1074/jbc.M114.561514.
  • Connolly SA, Rosen AE, Musier-Forsyth K, Francklyn CS. G-1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase. Biochemistry. 2004;43:962–9. doi:10.1021/bi035708f.
  • Schwartz MH, Pan T. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures. Nucleic Acids Res. 2016;44:294–303. doi:10.1093/nar/gkv1379.
  • Pauff S, Withers JM, McKean IJ, Mackay SP, Burley GA. Synthetic biological approaches for RNA labelling and imaging: design principles and future opportunities. Curr Opin Biotechnol. 2017;48:153–8. doi:10.1016/j.copbio.2017.04.003.
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. doi:10.1093/nar/gkh340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.