2,519
Views
14
CrossRef citations to date
0
Altmetric
Point of View

When SUMO met splicing

, , , &
Pages 689-695 | Received 26 Dec 2017, Accepted 20 Mar 2018, Published online: 09 May 2018

References

  • Will CL, Lührmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 2011;3:1–2
  • Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15:108–21.
  • Chen W, Moore MJ. The spliceosome: Disorder and dynamics defined. Curr Opin Struct Biol. 2014;24:141–149.
  • Papasaikas P, Valcárcel J. The Spliceosome: The Ultimate RNA Chaperone and Sculptor. Trends Biochem Sci. 2016;41:33–45.
  • Taliaferro JM, Lambert NJ, Sudmant PH, et al. RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation. Mol Cell. 2016;64:294–306.
  • Busch A, Hertel KJ. Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip Rev RNA. 2012;3(1):1–12.
  • Long JC, Caceres JF. The SR protein family of splicing factors : master regulators of gene expression. Biochem J. 2009;417(1):15–27.
  • Twyffels L, Gueydan C, Kruys V. Shuttling SR proteins: More than splicing factors. FEBS J. 2011;278:3246–3255.
  • Geuens T, Bouhy D, Timmerman V. The hnRNP family : insights into their role in health and disease. Hum Genet. 2016;135:851–867.
  • Dvinge H, Kim E, Abdel-wahab O, et al. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Can. 2016;16:413–430.
  • Li X, Manley JL. Inactivation of the SR Protein Splicing Factor ASF / SF2 Results in Genomic Instability. Cell. 2005;122:365–378.
  • Lin S, Coutinho-mansfield G, Wang D, et al. The splicing factor SC35 has an active role in transcriptional elongation. Nat Str & Mol Biol. 2008;15:819–826.
  • Wu H, Sun S, Tu K, et al. Article A Splicing-Independent Function of SF2 / ASF in MicroRNA Processing. Mol Cell. 2010;38:67–77.
  • Huang Y, Gattoni R, Stévenin J, et al. SR splicing factors as Adapter Proteins for TAP-Dependent mRNA Export. Mol Cell. 2003;11:837–843.
  • Zhang Z, Krainer AR. Involvement of SR Proteins in mRNA Surveillance. Mol Cell. 2004;16:597–607.
  • Michlewski G, Sanford JR, Cáceres JF. The Splicing Factor SF2/ASF Regulates Translation Initiation by Enhancing Phosphorylation of 4E-BP1. Mol Cell. 2008;30:179–189.
  • Pelisch F, Gerez J, Druker J, et al. The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proc Natl Acad Sci U S A. 2010;107:16119–16124.
  • Zhong X, Wang P, Han J, et al. 2009; SR Proteins in Vertical Integration of Gene Expression from Transcription to RNA Processing to Translation. Mol Cell.35:1–10.
  • Shin C, Kleiman FE, Manley JL. Multiple Properties of the Splicing Repressor SRp38 Distinguish It from Typical SR Proteins. Mol Cell Biol. 2005;25:8334–8343.
  • Denegri M, Chiodi I, Corioni M, et al. Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors. Mol Biol Cell. 2001;12:3502–14.
  • Bedard KM, Daijogo S, Semler BL. A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J. 2007;26:459–467.
  • Swanson CM, Sherer NM, Malim MH. SRp40 and SRp55 Promote the Translation of Unspliced Human Immunodeficiency Virus Type 1 RNA. J Virol. 2010;84:6748–6759.
  • Auyeung VC, Ulitsky I, McGeary SE, et al. Beyond secondary structure: Primary-sequence determinants license Pri-miRNA hairpins for processing. Cell. 2013;152:844–858.
  • Sanford JR, Ellis JD, Cazalla D, et al. Reversible phosphorylation differentially affects nuclear and cytoplasmic functions of splicing factor 2/alternative splicing factor. Proc Natl Acad Sci U S A. 2005;102:15042–7.
  • Botti V, McNicoll F, Steiner MC, et al. Cellular differentiation state modulates the mRNA export activity of SR proteins. J Cell Biol. 2017;216:1993–2009.
  • Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature. 2009;458:422–9.
  • Jentsch S, Psakhye I. Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu Rev Genet. 2013;47:167–86.
  • Liang Y, Lee C, Yao Y, et al. SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. Sci Rep. 2016;6:1–15.
  • Guo D, Li M, Zhang Y, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet. 2004;36:837–41.
  • Vassileva MT, Matunis MJ. SUMO modification of heterogeneous nuclear ribonucleoproteins. Mol Cell Biol. 2004;24:3623–3632.
  • Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, et al. 2013; Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun.4:2980.
  • Misteli T, Cáceres JF, Clement JQ, et al. Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo. J Cell Biol. 1998;143:297–307.
  • Soret J, Gabut M, Dupon C, et al. Altered Serine/Arginine-Rich Protein Phosphorylation and Exonic Enhancer-Dependent Splicing in Mammalian Cells Lacking Topoisomerase I. Cancer Res. 2003;63:8203–8211.
  • Ngo JCK, Chakrabarti S, Ding JH, et al. Interplay between SRPK and Clk/Sty kinases in phosphorylation of the splicing factor ASF/SF2 is regulated by a docking motif in ASF/SF2. Mol Cell. 2005;20:77–89.
  • Wang HY, Lin W, Dyck JA, et al. SRPK2: A differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J Cell Biol. 1998;140:737–750.
  • Xiao SH, Manley JL. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 1997;11:334–344.
  • Shin C, Feng Y, Manley JL. Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature. 2004;427:553–558.
  • Shi Y, Reddy B, Manley JL. PP1/PP2A Phosphatases Are Required for the Second Step of Pre-mRNA Splicing and Target Specific snRNP Proteins. Mol Cell. 2006;23:819–829.
  • Mathew R, Hartmuth K, Möhlmann S, et al. Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome. Nat Struct Mol Biol. 2008;15:435–443.
  • Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40.
  • Kuhn, AN, van Santen MA, Schwienhorst A, et al. Stalling of spliceosome assembly at distinct stages by small-molecule inhibitors of protein acetylation and deacetylation. RNA. 2009;15:153–175.
  • Gunderson FQ, Merkhofer EC, Johnson TL. Dynamic histone acetylation is critical for cotranscriptional spliceosome assembly and spliceosomal rearrangements. Proc Natl Acad Sci U S A. 2011;108:2004–2009.
  • Meister G, Eggert C, Bühler D, et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol. 2001;11:1990–1994.
  • Boisvert FM, Côté J, Boulanger MC, et al. Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol. 2002;159:957–969.
  • Boisvert F-M, Côté J, Boulanger M-C, et al. A Proteomic Analysis of Arginine-methylated Protein Complexes. Mol Cell Proteomics. 2003;2:1319–1330.
  • Sinha R, Allemand E, Zhang Z, et al. Arginine Methylation Controls the Subcellular Localization and Functions of the Oncoprotein Splicing Factor SF2/ASF. Mol Cell Biol. 2010;30:2762–2774.
  • Nichols RC, Wang XW, Tang J, et al. The RGG domain in hnRNP A2 affects subcellular localization. Exp Cell Res. 2000;256:522–532.
  • Passos DO, Quaresma AJC, Kobarg J. The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization. Biochem Biophys Res Commun. 2006;346:517–525.
  • Yu MC. The Role of Protein Arginine Methylation in mRNP Dynamics. Mol Biol Int. 2011;2011:163827.
  • Milligan L, Sayou C, Tuck A, et al. RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit. Elife. 2017;6:1–27.
  • Bellare P, Small EC, Huang X, et al. A role for ubiquitin in the spliceosome assembly pathway. Nat Struct Mol Biol. 2008;15:444–51.
  • Bellare P, Kutach AK, Rines AK, et al. Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p. RNA. 2006;12:292–302.
  • Song EJ, Werner SL, Neubauer J, et al. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev. 2010;24:1434–1447.
  • Hendriks IA, Vertegaal ACO. A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol. 2016;17:581–95.
  • Richard P, Vethantham V, Manley JL. Roles of sumoylation in mRNA processing and metabolism. Adv Exp Med Biol. 2017;963:15–33.
  • Vethantham V, Rao N, Manley JL. Sumoylation modulates the assembly and activity of the pre-mRNA 3’ processing complex. Mol Cell Biol. 2007;27:8848–58.
  • Desterro JMP, Keegan LP, Jaffray E, et al. SUMO-1 modification alters ADAR1 editing activity. Mol Biol Cell. 2005;16:5115–26.
  • Bretes H, Rouviere JO, Leger T, et al. Sumoylation of the THO complex regulates the biogenesis of a subset of mRNPs. Nucleic Acids Res. 2014;42:5043–5058.
  • Rappsilber J, Ryder U, Lamond AI, et al. Large-scale proteomic analysis of the human spliceosome. Genome Res. 2003;13:1231–1245.
  • Hutten S, Chachami G, Winter U, et al. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II. J Cell Sci. 2014;127:1065–78.
  • Navascues J, Bengoechea R, Tapia O, et al. SUMO-1 transiently localizes to Cajal bodies in mammalian neurons. J Struct Biol. 2008;163:137–146.
  • Ihara M, Stein P, Schultz RM. UBE2I (UBC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes. Biol Reprod. 2008;79:906–913.
  • Pozzi B, Bragado L, Will CL, et al. SUMO conjugation to spliceosomal proteins is required for efficient pre-mRNA splicing. Nucleic Acids Res. 2017;45:6729–6745.
  • Rouvière JO, Geoffroy MC, Palancade B. Multiple crosstalks between mRNA biogenesis and SUMO. Chromosoma. 2013;122:387–399.
  • Li M, Pokharel S, Wang JT, et al. RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability. Nat Commun. 2015;8:(6):6720.
  • Pawellek A, Ryder U, Tammsalu T, et al. Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. Elife. 2017;6:1–36.
  • Wahl MC, Will CL, Lührmann R. The Spliceosome: Design Principles of a Dynamic RNP Machine. Cell. 2009;136:701–718.
  • Flotho A, Melchior F. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem. 2013;82:357–85.
  • Daguenet E, Dujardin G, Valcárcel J. The pathogenicity of splicing defects: mechanistic insights into pre‐mRNA processing inform novel therapeutic approaches. EMBO Rep. 2015;16:1640 LP-1655.
  • Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17:19–32.
  • Krausová M, Staněk D. snRNP proteins in health and disease. Semin Cell Dev Biol. 2017; pii:S1084–9521:(17):30150–7.
  • Wahl MC, Lührmann R. SnapShot: Spliceosome Dynamics III. Cell. 2015;162:690–690.
  • Cvitkovic I, Jurica MS. Spliceosome database: A tool for tracking components of the spliceosome. Nucleic Acids Res. 2013;41:D132–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.