2,075
Views
32
CrossRef citations to date
0
Altmetric
Research Paper

ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction

, ORCID Icon &
Pages 807-818 | Received 12 Sep 2017, Accepted 20 Mar 2018, Published online: 25 May 2018

References

  • Bartel DP. MicroRNAs.: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
  • Cheng AM, Byrom MW, Shelton J, et al.. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33(4):1290–7.
  • Karp X, Ambros V. Encountering microRNAs in cell fate signaling. Science. 2005;310(5752):1288–9.
  • Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genetics Dev. 2005;15(5):563–8.
  • Xu P, Guo M, Hay BA. MicroRNAs and the regulation of cell death. Trends Genetics. 2004;20(12):617–24.
  • Alshalalfa M, Alhajj R. Using context-specific effect of miRNAs to identify functional associations between miRNAs and gene signatures. BMC Bioinformatics. 2013;14(12):S1.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.
  • Cui Q, Yu Z, Purisima EO, et al.. Principles of microRNA regulation of a human cellular signaling network. Mol Systems Biol. 2006;2(1):46.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.
  • Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, et al.. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(suppl 1):D140–D4.
  • Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2010;39(Database issue):gkq1027.
  • Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genetics. 2004;5(7):522–31.
  • Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.
  • Yu Z, Li Z, Jolicoeur N, et al.. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 2007;35(13):4535–41.
  • Strillacci A, Griffoni C, Sansone P, et al.. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res. 2009;315(8):1439–47.
  • Yang H, Kong W, He L, et al.. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425–33.
  • Liu C, Kelnar K, Liu B, et al.. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.
  • Bonci D, Coppola V, Musumeci M, et al.. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.
  • Chen X, Yan CC, Zhang X, et al.. HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. Oncotarget. 2016;7(40):65257–69.
  • Li J-Q, Rong Z-H, Chen X, et al.. MCMDA: Matrix completion for MiRNA-disease association prediction. Oncotarget. 2017;8(13):21187–21199
  • Chen X, Yan CC, Zhang X, et al.. RBMMMDA: predicting multiple types of disease-microRNA associations. Scientific Reports. 2015;5:13877.
  • Chen X, Yan G-Y. Semi-supervised learning for potential human microRNA-disease associations inference. Scientific Reports. 2014;4:5501.
  • Chen X, Liu M-X, Yan G-Y. RWRMDA: predicting novel human microRNA–disease associations. Mol BioSystems. 2012;8(10):2792–8.
  • Chen X, Liu M-X, Cui Q-H, et al.. Prediction of disease-related interactions between microRNAs and environmental factors based on a semi-supervised classifier. PloS One. 2012;7(8):e43425.
  • Chen X. KATZLDA: KATZ measure for the lncRNA-disease association prediction. Scientific Reports. 2015;5:16840.
  • Chen X, Yan CC, Zhang X, et al.. WBSMDA: within and between score for MiRNA-disease association prediction. Scientific Reports. 2016;6:21106.
  • Xuan P, Han K, Guo M, et al.. Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PloS One. 2013;8(8):e70204.
  • Jiang Q, Hao Y, Wang G, et al.. Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Sys Biol. 2010;4(1):S2.
  • Bandyopadhyay S, Mitra R, Maulik U, et al.. Development of the human cancer microRNA network. Silence. 2010;1(1):6.
  • Wang D, Wang J, Lu M, et al.. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics. 2010;26(13):1644–50.
  • Goh K-I, Cusick ME, Valle D, et al.. The human disease network. Proc Natl Acad Sci. 2007;104(21):8685–90.
  • Pasquier C, Gardès J. Prediction of miRNA-disease associations with a vector space model. Scientific Reports. 2016;6:27036.
  • Shi H, Xu J, Zhang G, et al.. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Systems Biol. 2013;7(1):101.
  • Xu C, Ping Y, Li X, et al.. Prioritizing candidate disease miRNAs by integrating phenotype associations of multiple diseases with matched miRNA and mRNA expression profiles. Mol BioSystems. 2014;10(11):2800–9.
  • Mørk S, Pletscher-Frankild S, Caro AP, et al.. Protein-driven inference of miRNA–disease associations. Bioinformatics. 2013;30(3):btt677.
  • Xuan P, Han K, Guo Y, et al.. Prediction of potential disease-associated microRNAs based on random walk. Bioinformatics. 2015;31(11):btv039.
  • Yang Z, Ren F, Liu C, et al.. dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics. 2010;11(4):S5.
  • Jiang Q, Wang Y, Hao Y, et al.. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(suppl 1):D98–D104.
  • Li Y, Qiu C, Tu J, et al.. HMDD v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 2014;42(D1):D1070–D4.
  • Oved K, Morag A, Pasmanik-Chor M, et al.. Genome-wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative SSRI antidepressant response biomarkers. Pharmacogenomics. 2012;13(10):1129–39.
  • Drusco A, Nuovo GJ, Zanesi N, et al.. MicroRNA profiles discriminate among colon cancer metastasis. PloS One. 2014;9(6):e96670.
  • Ogata-Kawata H, Izumiya M, Kurioka D, et al.. Circulating exosomal microRNAs as biomarkers of colon cancer. PloS One. 2014;9(4):e92921.
  • Jemal A, Bray F, Center MM, et al.. Global cancer statistics. CA: Cancer J Clin. 2011;61(2):69–90.
  • Guo C, Sah JF, Beard L, et al.. The noncoding RNA, miR‐126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3‐kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer. 2008;47(11):939–46.
  • Nakajima G, Hayashi K, Xi Y, et al.. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are associated with Chemoresponse to S-1 in colon cancer. Cancer Genomics-Proteomics. 2006;3(5):317–24.
  • Shi B, Sepp-Lorenzino L, Prisco M, et al.. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J BiolChem. 2007;282(45):32582–90.
  • Volinia S, Calin GA, Liu C-G, et al.. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natal Acad Sci U S A. 2006;103(7):2257–61.
  • Asangani I, Rasheed S, Nikolova D, et al.. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128–36.
  • Pu Xx, Huang GL, Guo HQ, et al.. Circulating miR‐221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25(10):1674–80.
  • Nishida N, Yokobori T, Mimori K, et al.. MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol. 2011;38(5):1437.
  • He B, Yin B, Wang B, et al.. microRNAs in esophageal cancer (Review). Mol Med Reports. 2012;6(3):459–65.
  • Enzinger PC, Mayer RJ. Esophageal cancer. N Eng J Med. 2003;349(23):2241–52.
  • Lee K-H, Goan Y-G, Hsiao M, et al.. MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res. 2009;315(15):2529–38.
  • Zhang H, Li M, Han Y, et al.. Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Digestive Dis Sci. 2010;55(9):2545–51.
  • Yu X, Jiang X, Li H, et al.. miR-203 inhibits the proliferation and self-renewal of esophageal cancer stem-like cells by suppressing stem renewal factor Bmi-1. Stem Cells Dev. 2013;23(6):576–85.
  • Jemal A, Siegel R, Ward E, et al.. Cancer statistics, 2006. CA: Cancer J Clin. 2006;56(2):106–30.
  • Manojlović D, Elaković D, Mladenović L. Therapeutic value of transcatheter embolization in malignant tumors of the renal parenchyma. Srpski Arhiv Za Celokupno Lekarstvo. 1986;114(7):631–7.
  • Takehara K, Nishikido M, Koga S, et al.. Multifocal transitional cell carcinoma associated with renal cell carcinoma in a patient on long‐term haemodialysis. Nephrol Dialysis Transplantation. 2002;17(9):1692–4.
  • Abdelmohsen K, Kim MM, Srikantan S, et al.. miR-519 suppresses tumor growth by reducing HuR levels. Cell Cycle. 2010;9(7):1354–9.
  • Mikhaylova O, Stratton Y, Hall D, et al.. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012;21(4):532–46.
  • Nakada C, Tsukamoto Y, Matsuura K, et al.. Overexpression of miR‐210, a downstream target of HIF1α, causes centrosome amplification in renal carcinoma cells. J Pathol. 2011;224(2):280–8.
  • Tsz-fung FC, Mankaruos M, Scorilas A, et al.. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol. 2010;183(2):743–51.
  • Lu R, Ji Z, Li X, et al.. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J Cancer Res Clin Oncol. 2014;140(3):387–97.
  • Bai X-Y, Ma Y, Ding R, et al.. miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol. 2011;22(7):1252–61.
  • Thai T-H, Calado DP, Casola S, et al.. Regulation of the germinal center response by microRNA-155. Science. 2007;316(5824):604–8.
  • Yang M, Shen H, Qiu C, et al.. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer. 2013;49(3):604–15.
  • Yuxia M, Zhennan T, Wei Z. Circulating miR-125b is a novel biomarker for screening non-small-cell lung cancer and predicts poor prognosis. J Cancer Res Clin Oncol. 2012;138(12):2045–50.
  • Osada H, Takahashi T. let‐7 and miR‐17‐92: Small‐sized major players in lung cancer development. Cancer Sci. 2011;102(1):9–17.
  • Hayashita Y, Osada H, Tatematsu Y, et al.. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65(21):9628–32.
  • Zhang C, Zhang J, Zhang A, et al.. PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol. 2010;37(6):1621.
  • Tao Z, Shi A, Lu C, et al.. Breast cancer: epidemiology and etiology. Cell Biochem Biophys. 2015;72(2):333–8.
  • Yan L-X, Huang X-F, Shao Q, et al.. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. Rna. 2008;14(11):2348–60.
  • Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26(21):8191–201.
  • Wang H, Tan G, Dong L, et al.. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PloS One. 2012;7(4):e34210.
  • Camps C, Buffa FM, Colella S, et al.. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14(5):1340–8.
  • Cloutier M, Wang E. Dynamic modeling and analysis of cancer cellular network motifs. Integrative Biol. 2011;3(7):724–32.
  • Wang E, Zaman N, Mcgee S, et al.. editors. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Semin Cancer Biol. 2015;30:4–12. Elsevier
  • van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics. 2011;27(21):3036–43.
  • Jaccard P. Etude de la distribution florale dans une portion des Alpes et du Jura. Bulletin De La Societe Vaudoise Des Sciences Naturelles. 1901;37(142):547–79.
  • Katz L. A new status index derived from sociometric analysis. Psychometrika. 1953;18(1):39–43.
  • Lü L, Zhou T. Link prediction in complex networks: A survey. Physica A: Statistical Mechan Applications. 2011;390(6):1150–70.
  • Chen X, Huang Y-A, You Z-H, et al.. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics. 2016;33(5):btw715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.