1,301
Views
4
CrossRef citations to date
0
Altmetric
Point of View

Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity

ORCID Icon ORCID Icon, ORCID Icon & ORCID Icon
Pages 696-702 | Received 13 Dec 2017, Accepted 28 Mar 2018, Published online: 25 May 2018

References

  • Knoll AH. The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci. 2011;39(1):217–239.
  • Nguyen TA, Cisse OH, Yun Wong J, et al. Innovation and constraint leading to complex multicellularity in the Ascomycota. Nat Commun. 2017;8:14444.
  • Niklas KJ, Newman SA. The origins of multicellular organisms. Evol Dev. 2013;15(1):41–52.
  • Brunet T, King N. The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell. 2017;43(2):124–140.
  • Davidson EH, Peter IS. Genomic control process. Oxford: Academic Press; 2015.
  • Larroux C, Luke GN, Koopman P, et al. Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol. 2008;25(5):980–996.
  • Degnan BM, Vervoort M, Larroux C, et al. Early evolution of metazoan transcription factors. Curr Opin Genet Dev. 2009;19(6):591–599.
  • Richards GS, Degnan BM. The dawn of developmental signaling in the Metazoa. Cold Spring Harb Symp Quant Biol. 2009;74:81–90.
  • Sebé-Pedrós A, de Mendoza A. Transcription factors and the origin of animal multicellularity. Evolutionary Transitions to Multicellular Life: Principles and mechanisms. >Dordrecht: Springer Netherlands. 2015. p. 379–394.
  • King N. The unicellular ancestry of animal development. Dev Cell. 2004;7(3):313–25.
  • King N, Hittinger CT, Carroll SB. Evolution of key cell signaling and adhesion protein families predates animal origins. Science. 2003;301:361–3.
  • Richter DJ, King N. The genomic and cellular foundations of animal origins. Annu Rev Genet. 2013;47(1):509–537.
  • de Mendoza A, Sebé-Pedrós A, Šestak MS, et al. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc Nat Acad Sci. 2013;110(50):E4858–E4866.
  • Sebé-Pedrós A, Roger AJ, Lang FB, et al. Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Nat Acad Sci. 2010;107(22):10142–10147.
  • Sebé-Pedrós A, de Mendoza A, Lang BF, et al. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol. 2011;28(3):1241–1254.
  • Sebé-Pedrós A, Zheng Y, Ruiz-Trillo I, et al. Premetazoan origin of the Hippo signaling pathway. Cell Rep. 2012; 1/26/;1(1):13–20.
  • Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I. The origin of Metazoa: a unicellular perspective. Nat Rev Genet. 2017;18:498.
  • Richter D, Fozouni P, Eisen M, et al. The ancestral animal genetic toolkit revealed by diverse choanoflagellate transcriptomes. bioRxiv. 2017. doi:10.1101/211789
  • Grau-Bové X, Torruella G, Donachie S, et al. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife. 2017;6:e26036.
  • Erwin DH, Laflamme M, Tweedt SM, et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science. 2011;334(6059):1091–7.
  • Srivastava M, Simakov O, Chapman J, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 466(7307):720–6.
  • Richards GS, Simionato E, Perron M, et al. Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol. 2008;18(15):1156–1161.
  • Gaiti F, Fernandez-Valverde SL, Nakanishi N, et al. Dynamic and widespread lncRNA expression in a sponge and the origin of animal complexity. Mol Biol Evol. 2015;32(9):2367–2382.
  • Fernandez-Valverde SL, Degnan BM. Bilaterian-like promoters in the highly compact Amphimedon queenslandica genome. Sci Rep. 2016;6:22496.
  • Fernandez-Valverde SL, Calcino AD, Degnan BM. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica. BMC Genomics. 2015;16(1):387.
  • Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Nat Acad Sci U S A. 2009;106(28):11667–72.
  • Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63.
  • Ravasi T, Suzuki H, Pang KC, et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 2006;16(1):11–9.
  • Bertone P, Stolc V, Royce TE, et al. Global identification of human transcribed sequences with genome tiling arrays. Science. 2004;306(5705):2242–6.
  • Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.
  • Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.
  • Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.
  • Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.
  • Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.
  • Okazaki Y, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563–573.
  • Lagarde J, Uszczynska-Ratajczak B, Carbonell S, et al. High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nature Genetics. 2017;49:1731–1740.
  • Ingolia Nicholas T, Brar Gloria A, Stern-Ginossar N, et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Reports. 2014;8(5):1365–1379.
  • Guttman M, Russell P, Ingolia NT, et al. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell. 2013;154(1):240–51.
  • Housman G, Ulitsky I. Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2016;1859(1):31–40.
  • Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet. 2014;15(6):423–437.
  • Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62.
  • Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Re Mol Cell Biol. 2016;17:756–770.
  • Rutenberg-Schoenberg M, Sexton AN, Simon MD. The properties of long noncoding RNAs that regulate chromatin. Annu Rev Genomics Hum Genet. 2016;17:69–94.
  • Melé M, Rinn John L. “Cat's Cradling” the 3D Genome by the Act of LncRNA Transcription. Mol Cell. 2016;62(5):657–664.
  • Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407.
  • Hacisuleyman E, Goff LA, Trapnell C, et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol. 2014; 0;21(2):198–206.
  • Ulitsky I. Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat Rev Genet. 2016;17(10):601–14.
  • Forouzmand E, Owens NDL, Blitz IL, et al. Developmentally regulated long non-coding RNAs in Xenopus tropicalis. Dev Biol. 2016;pii: S0012-1606(16):30120–8.
  • Tan MH, Au KF, Yablonovitch AL, et al. RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res. 2013;23(1):201–216.
  • Necsulea A, Soumillon M, Warnefors M, et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature. 2014;505(7485):635–40.
  • Pauli A, Valen E, Lin MF, et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 2012;22(3):577–91.
  • Ulitsky I, Shkumatava A, Jan CH, et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 147(7):1537–50.
  • Sauvageau M, Goff LA, Lodato S, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife. 2013;2:e01749.
  • Nam JW, Bartel DP. Long noncoding RNAs in C. elegans. Genome Res. 2012 Dec;22(12):2529–40.
  • Brown JB, Boley N, Eisman R, et al. Diversity and dynamics of the Drosophila transcriptome. Nature. 2014;512(7515):393–9.
  • Chen B, Zhang Y, Zhang X, et al. Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis. Sci Rep. 2016;6:23330.
  • Jenkins AM, Waterhouse RM, Muskavitch MAT. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genomics. 2015;16(1):1–14.
  • Quinn JJ, Zhang QC, Georgiev P, et al. Rapid evolutionary turnover underlies conserved lncRNA-genome interactions. Genes Dev. 2016;30(2):191–207.
  • Jayakodi M, Jung JW, Park D, et al. Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera. BMC Genomics. 2015;16(1):1–12.
  • Young RS, Marques AC, Tibbit C, et al. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biol Evol. 2012;4(4):427–42.
  • Wu Y, Cheng T, Liu C, et al. Systematic identification and characterization of long non-coding RNAs in the silkworm, Bombyx mori. PloS One. 2016;11(1):e0147147.
  • Mu C, Wang R, Li T, et al. Long non-coding RNAs (lncRNAs) of sea cucumber: Large-scale prediction, expression profiling, non-coding network construction, and lncRNA-microRNA-gene interaction analysis of lncRNAs in Apostichopus japonicus and Holothuria glaberrima during LPS challenge and radial organ complex regeneration. Mar Biotechnol. 2016. 2016;18(4):485–499.
  • Bråte J, Adamski M, Neumann RS, et al. Regulatory RNA at the root of animals: dynamic expression of developmental lincRNAs in the calcisponge Sycon ciliatum. Proceedings of the Royal Society of London B: Biological Sciences. 2015;282(1821):20151746. doi:10.1098/rspb.2015.1746
  • Perry RB-T, Ulitsky I. The functions of long noncoding RNAs in development and stem cells. Development. 2016;143(21):3882–3894.
  • Huang C, Morlighem J-ÉRL, Cai J, et al. Identification of long non-coding RNAs in two anthozoan species and their possible implications for coral bleaching. Sci Rep. 2017;7(1):5333.
  • Heard E, Mongelard F, Arnaud D, et al. Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells. Proc Nat Acad Sci U S A. 1999;96(12):6841–6846.
  • Migeon BR, Kazi E, Haisley-Royster C, et al. Human X inactivation center induces random X chromosome inactivation in male transgenic mice. Genomics. 1999;59(2):113–121.
  • Grant J, Mahadevaiah SK, Khil P, et al. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature. 2012;487(7406):254–258.
  • Liu SJ, Nowakowski TJ, Pollen AA, et al. Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol. 2016;17(1):1–17.
  • Cabili MN, Dunagin MC, McClanahan PD, et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 2015; 2015;16(1):1–16.
  • Ponjavic J, Oliver PL, Lunter G, et al. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genetics. 2009;5(8):e1000617.
  • Mercer TR, Dinger ME, Sunkin SM, et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Nat Acad Sci. 2008;105(2):716–721.
  • Zappulo A, van den Bruck D, Ciolli Mattioli C, et al. RNA localization is a key determinant of neurite-enriched proteome. Nat Commun. 2017;8(1):583.
  • Goff LA, Groff AF, Sauvageau M, et al. Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Nat Acad Sci. 2015;112(22):6855–6862.
  • Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011 Feb;12(2):136–49.
  • Gaiti F, Hatleberg WL, Tanurdzic M, et al. Sponge long non-coding RNAs are expressed in specific cell types and conserved networks. Non-coding RNA. 2018;4(1):6. doi:10.3390/ncrna4010006.
  • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.
  • Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 2006 Jan;22(1):1–5.
  • Hezroni H, Koppstein D, Schwartz Matthew G, et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 2015;11(7):1110–1122.
  • Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46.
  • Maenner S, Blaud M, Fouillen L, et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol. 2010;8(1):e1000276.
  • Lubelsky Y, Ulitsky I. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature. 2018; 555(7694):107–111.
  • Amaral PP, Leonardi T, Han N, et al. Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol. 2018;19:32. doi:10.1186/s13059-018-1405-5.
  • Hawkes Emily J, Hennelly Scott P, Novikova Irina V, et al. COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Rep. 2016;16(12):3087–3096.
  • Novikova IV, Hennelly SP, Sanbonmatsu KY. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 2012;40(11):5034–5051.
  • Sanbonmatsu KY. Towards structural classification of long non-coding RNAs. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2016;1859(1):41–45.
  • Tichon A, Gil N, Lubelsky Y, et al. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat Commun. 2016;7:12209.
  • Chodroff RA, Goodstadt L, Sirey TM, et al. Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol. 2010;11(7):R72.
  • Washietl S, Kellis M, Garber M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res. 2014;24(4):616–28.
  • Peter Isabelle S, Davidson Eric H. Evolution of gene regulatory networks controlling body plan development. Cell. 2011;144(6):970–985.
  • Erwin DH, Davidson EH. The evolution of hierarchical gene regulatory networks. Nat Rev Genet. 2009;10(2):141–148.
  • Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans. Science. 2006;311. doi:10.1126/science.1113832.
  • Kapusta A, Feschotte C. Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet. 2014;30(10):439–452.
  • Sebé-Pedrós A, Ballaré C, Parra-Acero H, et al. The dynamic regulatory genome of Capsaspora and the origin of animal multicellularity. Cell. 2016;165(5):1224–37.
  • de Mendoza A, Suga H, Permanyer J, et al. Complex transcriptional regulation and independent evolution of fungal-like traits in a relative of animals. eLife. 2015(4):e08904.
  • Gaiti F, Jindrich K, Fernandez-Valverde SL, et al. Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity. eLife. 2017; 2017/04/11;6:e22194.
  • Hinman V, Cary G. The evolution of gene regulation. eLife. 2017; 2017/05/12;6:e27291.
  • Levine M, Cattoglio C, Tjian R. Looping back to leap forward: Transcription enters a new era. Cell. 2014;157(1):13–25.
  • Long HK, Prescott SL, Wysocka J. Ever-Changing Landscapes: Transcriptional Enhancers in Development and Evolution. Cell. 2017;167(5):1170–1187.
  • Dickel DE, Ypsilanti AR, Pla R, et al. Ultraconserved Enhancers Are Required for Normal Development. Cell. 2018.
  • Schwaiger M, Schonauer A, Rendeiro AF, et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 2014 Apr;24(4):639–50.
  • Rada-Iglesias A, Bajpai R, Swigut T, et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470(7333):279–283.
  • Creyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Nat Acad Sci. 2010;107(50):21931–21936.
  • Heintzman ND, Hon GC, Hawkins RD, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459.
  • Daugherty AC, Yeo RW, Buenrostro JD, et al. Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans. Genome Res. 2017;27:2096–2107.
  • Natoli G. Andrau J-C. Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet. 2012;46(1):1–19.
  • Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet. 2016;17(4):207–23.
  • Kim T-K, Hemberg M, Gray JM, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465(7295):182–187.
  • Marques A, Hughes J, Graham B, et al. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol. 2013;14(11):R131. doi:10.1186/gb-2013-14-11-r131.
  • Ilott NE, Heward JA, Roux B, et al. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun. 2014;5:3979.
  • Werner MS, Sullivan MA, Shah RN, et al. Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription. Nat Struct Mol Biol. 2017;24:596.
  • Gayen S, Kalantry S. Chromatin-enriched lncRNAs: a novel class of enhancer RNAs. Nat Struct Mol Biol. 2017;24:556.
  • Grosberg RK, Strathmann RR. The Evolution of Multicellularity: A Minor Major Transition? Annual Review of Ecology, Evolution, and Systematics. 2007;38(1):621–654.
  • Umen JG. Green Algae and the Origins of Multicellularity in the Plant Kingdom. Cold Spring Harbor Perspectives in Biology. 2014;6(11).
  • Leliaert F, Smith DR, Moreau H, et al. Phylogeny and Molecular Evolution of the Green Algae. Crit Rev Plant Sci. 2012;31(1):1–46.
  • Featherston J, Arakaki Y, Hanschen ER, et al. The 4-celled Tetrabaena socialis nuclear genome reveals the essential components for genetic control of cell number at the origin of multicellularity in the volvocine lineage. Mol Biol Evol. 2017;35(4):855–870.
  • Prochnik SE, Umen J, Nedelcu AM, et al. Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri. Science. 2010;329(5988):223.
  • Vergara Z, Gutierrez C. Emerging roles of chromatin in the maintenance of genome organization and function in plants. Genome Biol. 2017;18(1):96.
  • Shaver S, Casas-Mollano JA, Cerny RL, et al. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics. 2010;5(4):301–312.
  • Mikulski P, Komarynets O, Fachinelli F, et al. Characterization of the Polycomb-Group Mark H3K27me3 in Unicellular Algae. Front Plant Sci. 2017;8:607.
  • Leys SP, Degnan BM. Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invertebr Biol. 2002;121(3):171–189.
  • Gaiti F, Calcino AD, Tanurdžić M, et al. Origin and evolution of the metazoan non-coding regulatory genome. Dev Biol. 2017;427(2):193–202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.