1,240
Views
7
CrossRef citations to date
0
Altmetric
Brief Communication

Observation of preQ1-II riboswitch dynamics using single-molecule FRET

, , , , ORCID Icon &
Pages 1086-1092 | Received 26 May 2018, Accepted 08 Oct 2018, Published online: 30 Oct 2018

References

  • Wedekind JE, Dutta D, Belashov IA, et al. Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes. J Biol Chem. 2017;292:9441–9450.
  • McCown PJ, Corbino KA, Stav S, et al. Riboswitch diversity and distribution. RNA. 2017;23:995–1011.
  • Belashov IA, Dutta D, Salim M, et al. Tails of three knotty switches: how preQ1 riboswitch structures control protein translation. eLife Sci. 2015. DOI:10.1002/9780470015902.a0021031
  • Breaker RR. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol. 2012;4:a003566.
  • Sherwood AV, Henkin TM. Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses. Annu Rev Microbiol. 2016;70:361–374.
  • Roth A, Breaker RR. The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem. 2009;78:305–334.
  • Garst AD, Batey RT. A switch in time: detailing the life of a riboswitch. Biochim Biophys Acta. 2009;1789:584–591.
  • Serganov A, Nudler E. A decade of riboswitches. Cell. 2013;152:17–24.
  • Fuchs RT, Grundy FJ, Henkin TM. S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA. Proc Natl Acad Sci U S A. 2007;104:4876–4880.
  • Liberman JA, Wedekind JE. Riboswitch structure in the ligand-free state. Wiley Interdiscip Rev RNA. 2012;3:369–384.
  • Souliere MF, Altman RB, Schwarz V, et al. Tuning a riboswitch response through structural extension of a pseudoknot. Proc Natl Acad Sci U S A. 2013;110:E3256–E64.
  • Meyer MM, Roth A, Chervin SM, et al. Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA. 2008;14:685–695.
  • Liberman JA, Salim M, Krucinska J, et al. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. Nat Chem Biol. 2013;9:353–355.
  • Aytenfisu AH, Liberman JA, Wedekind JE, et al. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics. RNA. 2015;21:1898–1907.
  • Lippa GM, Liberman JA, Jenkins JL, et al. Crystallographic analysis of small ribozymes and riboswitches. Methods Mol Biol. 2012;848:159–184.
  • McCarty RM, Bandarian V. Biosynthesis of pyrrolopyrimidines. Bioorg Chem. 2012;43:15–25.
  • McCown PJ, Liang JJ, Weinberg Z, et al. Structural, functional, and taxonomic diversity of three preQ1 riboswitch classes. Chem Biol. 2014;21:880–889.
  • Akiyama BM, Stone MD. Assembly of complex RNAs by splinted ligation. Methods Enzymol. 2009;469:27–46.
  • Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nat Methods. 2008;5:507–516.
  • Cornish PV, Ermolenko DN, Noller HF, et al. Spontaneous intersubunit rotation in single ribosomes. Mol Cell. 2008;30:578–588.
  • Salsi E, Farah E, Dann J, et al. Following movement of domain IV of elongation factor G during ribosomal translocation. Proc Natl Acad Sci U S A. 2014;111:15060–15065.
  • Hua B, Han KY, Zhou R, et al. An improved surface passivation method for single-molecule studies. Nat Methods. 2014;11:1233–1236.
  • McKinney SA, Joo C, Ha T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J. 2006;91:1941–1951.
  • Liberman JA, Suddala KC, Aytenfisu A, et al. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Proc Natl Acad Sci U S A. 2015;112:E3485–E94.
  • Haller A, Rieder U, Aigner M, et al. Conformational capture of the SAM-II riboswitch. Nat Chem Biol. 2011;7:393–400.
  • Alatossava T, Jutte H, Kuhn A, et al. Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol. 1985;162:413–419.
  • Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys. 2011;512:1–23.
  • Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010;11:129.
  • Dutta D, Belashov IA, Wedekind JE. Coupling green fluorescent protein expression with chemical modification to probe functionally relevant riboswitch conformations in live bacteria. Biochemistry. 2018;57:4620–4628.
  • Neuner S, Santner T, Kreutz C, et al. The “Speedy” Synthesis of Atom-Specific (15)N Imino/Amido-Labeled RNA. Chemistry. 2015;21:11634–11643.
  • Suddala KC, Rinaldi AJ, Feng J, et al. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure. Nucleic Acids Res. 2013;41:10462–10475.
  • Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol. 2009;5:789–796.
  • Frener M, Micura R. Conformational rearrangements of individual nucleotides during RNA-ligand binding are rate-differentiated. J Am Chem Soc. 2016;138:3627–3630.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.