1,517
Views
16
CrossRef citations to date
0
Altmetric
Review

Kinetics coming into focus: single-molecule microscopy of riboswitch dynamics

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1077-1085 | Received 24 Jul 2018, Accepted 08 Oct 2018, Published online: 29 Oct 2018

References

  • McCown PJ, Corbino KA, Stav S, et al. Riboswitch diversity and distribution. RNA. 2017;23(7):995–1011.
  • Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Curr Opin Struct Biol. 2005;15(3):342–348.
  • Barrick JE, Breaker RR. The power of riboswitches. Sci Am. 2007;296(1):50–57.
  • Sherwood AV, Henkin TM. Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses. Annu Rev Microbiol. 2016;70:361–374.
  • Serganov A, Nudler E. A decade of riboswitches. Cell. 2013;152(1–2):17–24.
  • Garst AD, Edwards AL, Batey RT. Riboswitches: structures and mechanisms. Cold Spring Harb Perspect Biol. 2011;3(6). DOI:10.1101/cshperspect.a003533
  • Barrick JE, Corbino KA, Winkler WC, et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci USA. 2004;101(17):6421–6426.
  • Dar D, Shamir M, Mellin JR, et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science (New York, NY). 2016;352(6282):aad9822.
  • Nou X, Kadner RJ. Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA. 2000;97(13):7190–7195.
  • Bastet L, Chauvier A, Singh N, et al. Translational control and Rho-dependent transcription termination are intimately linked in riboswitch regulation. Nucleic Acids Res. 2017;45(12):7474–7486.
  • Takemoto N, Tanaka Y, Inui M. Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum. Nucleic Acids Res. 2015;43(1):520–529.
  • Caron M-P, Bastet L, Lussier A, et al. Dual-acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci USA. 2012;109(50):E3444–53.
  • Chauvier A, Picard-Jean F, Berger-Dancause J-C, et al. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation. Nat Commun. 2017;8:13892.
  • Hollands K, Proshkin S, Sklyarova S, et al. Riboswitch control of Rho-dependent transcription termination. Proc Natl Acad Sci USA. 2012;109(14):5376–5381.
  • Hollands K, Sevostiyanova A, Groisman EA. Unusually long-lived pause required for regulation of a Rho-dependent transcription terminator. Proc Natl Acad Sci USA. 2014;111(19):E1999–2007.
  • DebRoy S, Gebbie M, Ramesh A, et al. A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science (New York, NY). 2014;345(6199):937–940.
  • Mellin JR, Koutero M, Dar D, et al. Riboswitches. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science (New York, NY). 2014;345(6199):940–943.
  • Grundy FJ, Henkin TM. The T box and S box transcription termination control systems. Front Biosci. 2003;8:d20–31.
  • Suddala KC, Cabello-Villegas J, Michnicka M, et al. Hierarchical mechanism of amino acid sensing by the T-box riboswitch. Nat Commun. 2018;9(1):1896.
  • Zhang J, Ferre-D’Amare AR. Structure and mechanism of the T-box riboswitches. Wiley Interdiscip Rev RNA. 2015;6(4):419–433.
  • Sherwood AV, Frandsen JK, Grundy FJ, et al. New tRNA contacts facilitate ligand binding in a Mycobacterium smegmatis T box riboswitch. Proc Natl Acad Sci USA. 2018;115(15):3894–3899.
  • Serganov A, Huang L, Patel DJ. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature. 2008;455(7217):1263–1267.
  • Stoddard CD, Montange RK, Hennelly SP, et al. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure (London, England: 1993). 2010;18(7):787–797.
  • Huang L, Serganov A, Patel DJ. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol Cell. 2010;40(5):774–786.
  • Jenkins JL, Krucinska J, McCarty RM, et al. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. 2011;286(28):24626–24637.
  • Suddala KC, Rinaldi AJ, Feng J, et al. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure. Nucleic Acids Res. 2013;41(22):10462–10475.
  • Liberman JA, Suddala KC, Aytenfisu A, et al. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Proc Natl Acad Sci USA. 2015;112(27):E3485–94.
  • Aboul-Ela F, Huang W, Abd Elrahman M, et al. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design. Wiley Interdiscip Rev RNA. 2015;6(6):631–650.
  • Fallmann J, Will S, Engelhardt J, et al. Recent advances in RNA folding. J Biotechnol. 2017;261:97–104.
  • Jones CP, Ferre-D’Amare AR. Long-range interactions in riboswitch control of gene expression. Annu Rev Biophys. 2017;46:455–481.
  • Pan T, Sosnick T. RNA folding during transcription. Annu Rev Biophys Biomol Struct. 2006;35:161–175.
  • Zhao B, Guffy SL, Williams B, et al. An excited state underlies gene regulation of a transcriptional riboswitch. Nat Chem Biol. 2017;13(9):968–974.
  • Helmling C, Klötzner D-P, Sochor F, et al. Life times of metastable states guide regulatory signaling in transcriptional riboswitches. Nat Commun. 2018;9(1):944.
  • Lai D, Proctor JR, Meyer IM. On the importance of cotranscriptional RNA structure formation. RNA. 2013;19(11):1461–1473.
  • Gong S, Wang Y, Wang Z, et al. Co-transcriptional folding and regulation mechanisms of riboswitches. Molecules. 2017;22(7). DOI:10.3390/molecules22071169
  • Feng J, Walter NG, Brooks CL 3rd. Cooperative and directional folding of the preQ1 riboswitch aptamer domain. J Am Chem Soc. 2011;133(12):4196–4199.
  • Wacker A, Buck J, Richter C, et al. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches. RNA Biol. 2012;9(5):672–680.
  • Zhang J, Ferre-D’Amare AR. Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout. Mol Cell. 2014;55(1):148–155.
  • Tapsin S, Sun M, Shen Y, et al. Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes. Nat Commun. 2018;9(1):1289.
  • Nelson JW, Atilho RM, Sherlock ME, et al. Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class. Mol Cell. 2017;65(2):220–230.
  • Greenlee EB, Stav S, Atilho RM, et al. Challenges of ligand identification for the second wave of orphan riboswitch candidates. RNA Biol. 2018;15(3):377–390.
  • Regulski EE, Breaker RR. In-line probing analysis of riboswitches. Methods Mol Biol. 2008;419:53–67.
  • Zhuang X, Kim H, Pereira MJ, et al. Correlating structural dynamics and function in single ribozyme molecules. Science (New York, NY). 2002;296(5572):1473–1476.
  • Solomatin SV, Greenfeld M, Herschlag D. Implications of molecular heterogeneity for the cooperativity of biological macromolecules. Nat Struct Mol Biol. 2011;18(6):732–734.
  • Solomatin SV, Greenfeld M, Chu S, et al. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature. 2010;463(7281):681–684.
  • Suddala KC, Walter NG. Riboswitch structure and dynamics by smFRET microscopy. Methods Enzymol. 2014;549:343–373.
  • Lakowicz JR. Principles of fluorescence spectroscopy. New York, NY: Springer; 2006.
  • Larson JD, Rodgers ML, Hoskins AA. Visualizing cellular machines with colocalization single molecule microscopy. Chem Soc Rev. 2014;43(4):1189–1200.
  • Perez-Gonzalez C, Grondin JP, Lafontaine DA, et al. Biophysical approaches to bacterial gene regulation by riboswitches. Adv Exp Med Biol. 2016;915:157–191.
  • St-Pierre P, McCluskey K, Shaw E, et al. Fluorescence tools to investigate riboswitch structural dynamics. Biochim Biophys Acta. 2014;1839(10):1005–1019.
  • Walter NG, Huang CY, Manzo AJ, et al. Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods. 2008;5(6):475–489.
  • Yildiz A, Selvin PR. Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res. 2005;38(7):574–582.
  • Joo C, Balci H, Ishitsuka Y, et al. Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem. 2008;77:51–76.
  • Ray S, Widom JR, Walter NG. Life under the microscope: single-molecule fluorescence highlights the RNA world. Chem Rev. 2018;118(8):4120–4155.
  • Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nat Methods. 2008;5(6):507–516.
  • Blanco M, Walter NG. Analysis of complex single-molecule FRET time trajectories. Methods Enzymol. 2010;472:153–178.
  • Rinaldi AJ, Lund PE, Blanco MR, et al. The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts. Nat Commun. 2016;7:8976.
  • Frieda KL, Block SM. Direct observation of cotranscriptional folding in an adenine riboswitch. Science (New York, NY). 2012;338(6105):397–400.
  • Greenleaf WJ, Frieda KL, Foster DAN, et al. Direct observation of hierarchical folding in single riboswitch aptamers. Science (New York, NY). 2008;319(5863):630–633.
  • Chandra V, Hannan Z, Xu H, et al. Single-molecule analysis reveals multi-state folding of a guanine riboswitch. Nat Chem Biol. 2017;13(2):194–201.
  • Ritchie DB, Woodside MT. Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Curr Opin Struct Biol. 2015;34:43–51.
  • Neupane K, Yu H, Foster DA, et al. Single-molecule force spectroscopy of the add adenine riboswitch relates folding to regulatory mechanism. Nucleic Acids Res. 2011;39(17):7677–7687.
  • Savinov A, Block SM. Folding and catalysis of the glms ribozyme riboswitch studied at the single-molecule level. Biophys J. 2017;112(3):368a.
  • Savinov A, Perez CF, Block SM. Single-molecule studies of riboswitch folding. Biochim Biophys Acta. 2014;1839(10):1030–1045.
  • Chemla YR. High-resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins. Biopolymers. 2016;105(10):704–714.
  • Duesterberg VK, Fischer-Hwang IT, Perez CF, et al. Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer. eLife. 2015;4. DOI:10.7554/eLife.12362.
  • Lemay JF, Penedo JC, Tremblay R, et al. Folding of the adenine riboswitch. Chem Biol. 2006;13(8):857–868.
  • Lemay JF, Penedo JC, Mulhbacher J, et al. Molecular basis of RNA-mediated gene regulation on the adenine riboswitch by single-molecule approaches. Methods Mol Biol. 2009;540:65–76.
  • Fiegland LR, Garst AD, Batey RT, et al. Single-molecule studies of the lysine riboswitch reveal effector-dependent conformational dynamics of the aptamer domain. Biochemistry. 2012;51(45):9223–9233.
  • Hammes GG, Chang YC, Oas TG. Conformational selection or induced fit: a flux description of reaction mechanism. Proc Natl Acad Sci USA. 2009;106(33):13737–13741.
  • Le Chatelier H, Boudouard O. Limits of flammability of gaseous mixtures. Bulletin de la Société Chimique de France (Paris). 1898;19:483–488.
  • Suddala KC, Wang J, Hou Q, et al. Mg(2+) shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection. J Amer Chem Soc. 2015;137(44):14075–14083.
  • Haller A, Altman RB, Souliere MF, et al. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proc Natl Acad Sci USA. 2013;110(11):4188–4193.
  • Heppell B, Blouin S, Dussault AM, et al. Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Nat Chem Biol. 2011;7(6):384–392.
  • Haller A, Rieder U, Aigner M, et al. Conformational capture of the SAM-II riboswitch. Nat Chem Biol. 2011;7(6):393–400.
  • Boudreault J, Perez-Gonzalez DC, Penedo JC, et al. Single-molecule approaches for the characterization of riboswitch folding mechanisms. Methods Mol Biol. 2015;1334:101–107.
  • Wood S, Ferre-D’Amare AR, Rueda D. Allosteric tertiary interactions preorganize the c-di-GMP riboswitch and accelerate ligand binding. ACS Chem Biol. 2012;7(5):920–927.
  • Souliere MF, Altman RB, Schwarz V, et al. Tuning a riboswitch response through structural extension of a pseudoknot. Proc Natl Acad Sci USA. 2013;110(35):E3256–64.
  • Holmstrom ED, Polaski JT, Batey RT, et al. Single-molecule conformational dynamics of a biologically functional hydroxocobalamin riboswitch. J Am Chem Soc. 2014;136(48):16832–16843.
  • Warhaut S, Mertinkus KR, Hollthaler P, et al. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Nucleic Acids Res. 2017;45(9):5512–5522.
  • Manz AS, Paeng K, Kaufman LJ. Single molecule studies reveal temperature independence of lifetime of dynamic heterogeneity in polystyrene. J Chem Phys. 2018;148(20):204508.
  • Manz C, Kobitski AY, Samanta A, et al. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch. Nat Chem Biol. 2017;13(11):1172–1178.
  • Widom JR, Nedialkov YA, Rai V, et al. Ligand modulates cross-coupling between riboswitch folding and transcriptional pausing. Mol Cell. 2018;in press.
  • Shaw E, St-Pierre P, McCluskey K, et al. Using sm-FRET and denaturants to reveal folding landscapes. Methods Enzymol. 2014;549:313–341.
  • Baird NJ, Inglese J, Ferre-D’Amare AR. Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes. Nat Commun. 2015;6:8898.
  • Zhang J, Landick R. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem Sci. 2016;41(4):293–310.
  • Wickiser JK, Winkler WC, Breaker RR, et al. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell. 2005;18(1):49–60.
  • Lemay JF, Desnoyers G, Blouin S, et al. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet. 2011;7(1):e1001278.
  • Dangkulwanich M, Ishibashi T, Bintu L, et al. Molecular mechanisms of transcription through single-molecule experiments. Chem Rev. 2014;114(6):3203–3223.
  • Anthony PC, Perez CF, García-García C, et al. Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer. Proc Natl Acad Sci USA. 2012;109(5):1485–1489.
  • Uhm H, Kang W, Ha KS, et al. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. Proc Natl Acad Sci USA. 2017;115(2):331–336.
  • Castro-Roa D, Zenkin N. In vitro experimental system for analysis of transcription-translation coupling. Nucleic Acids Res. 2012;40(6):e45.
  • Proshkin S, Rahmouni AR, Mironov A, et al. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science (New York, NY). 2010;328(5977):504–508.
  • Kohler R, Mooney RA, Mills DJ, et al. Architecture of a transcribing-translating expressome. Science (New York, NY). 2017;356(6334):194–197.
  • Moore SJ, Mayer MJ, Biedendieck R, et al. Towards a cell factory for vitamin B12 production in Bacillus megaterium: bypassing of the cobalamin riboswitch control elements. N Biotechnol. 2014;31(6):553–561.
  • Daher M, Widom JR, Tay W, et al. Soft interactions with model crowders and non-canonical interactions with cellular proteins stabilize RNA folding. J Mol Biol. 2018;430(4):509–523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.