1,005
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Molecular network of miR-1343 regulates the pluripotency of porcine pluripotent stem cells via repressing OTX2 expression

, , , & ORCID Icon
Pages 82-92 | Received 23 Jul 2018, Accepted 08 Dec 2018, Published online: 27 Dec 2018

References

  • Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell. 2009;4:487–492. PMID:19497275.
  • Niwa H, Ogawa K, Shimosato D, et al. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460:118–122. PMID:19571885.
  • Xiao J, Mai DH, Xie L. Resetting human naive pluripotency. Genet Epigenet. 2016;8:37–41. PMID:27512340.
  • Lanner F, Rossant J. The role of FGF/Erk signaling in pluripotent cells. Development. 2010;137:3351–3360. PMID:20876656.
  • Festuccia N, Osorno R, Halbritter F, et al. Esrrb is a direct nanog target gene that can substitute for nanog function in pluripotent cells. Cell Stem Cell. 2012;11:477–490. PMID:WOS:000309896500009.
  • Martello G, Sugimoto T, Diamanti E, et al. Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell. 2012;11:491–504. PMID:23040478.
  • Yeo JC, Jiang J, Tan ZY, et al. Klf2 is an essential factor that sustains ground state pluripotency. Cell Stem Cell. 2014;14:864–872. PMID:24905170.
  • Fidalgo M, Shekar PC, Ang YS, et al. Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells. 2011;29:1705–1716. PMID:21915945.
  • Navarra A, Musto A, Gargiulo A, et al. Hmga2 is necessary for Otx2-dependent exit of embryonic stem cells from the pluripotent ground state. BMC Biol. 2016;14:24. PMID:27036552.
  • Davies OR, Lin CY, Radzisheuskaya A, et al. Tcf15 primes pluripotent cells for differentiation. Cell Rep. 2013;3:472–484. PMID:23395635.
  • Zhang J, Zhang M, Acampora D, et al. OTX2 restricts entry to the mouse germline. Nature. 2018;562:595–599. PMID:30283136.
  • Lee YJ, Ramakrishna S, Chauhan H, et al. Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripotency. Cell Regener. 2016;5:2. PMID:27006752.
  • Judson RL, Greve TS, Parchem RJ, et al. MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nat Struct Mol Biol. 2013;20:1227–1235. PMID:24037508.
  • Choi YJ, Lin CP, Risso D, et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science. 2017;355. PMID: 28082412. DOI:10.1126/science.aag1927
  • Xu N, Papagiannakopoulos T, Pan G, et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137:647–658. PMID:19409607.
  • Adammek M, Greve B, Kassens N, et al. MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil Steril. 2013;99:1346–1355e5. PMID: 23312222.
  • Subramanyam D, Lamouille S, Judson RL, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29:443–448. PMID:21490602.
  • West FD, Terlouw SL, Kwon DJ, et al. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 2010;19:1211–1220. PMID:20380514.
  • Wu Z, Chen J, Ren J, et al. Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol. 2009;1:46–54. PMID:19502222.
  • Esteban MA, Xu J, Yang J, et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem. 2009;284:17634–17640. PMID:19376775.
  • Ezashi T, Telugu BP, Alexenko AP, et al. Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A. 2009;106:10993–10998. PMID:19541600.
  • Cheng D, Guo Y, Li Z, et al. Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PloS one. 2012;7:e51778. PMID:23251622.
  • Zhang S, Guo Y, Cui Y, et al. Generation of intermediate porcine iPS cells under culture condition favorable for mesenchymal-to-epithelial transition. Stem Cell Rev. 2015;11:24–38. PMID:25134796.
  • Acampora D, Omodei D, Petrosino G, et al. Loss of the Otx2-binding site in the nanog promoter affects the integrity of embryonic stem cell subtypes and specification of inner cell mass-derived epiblast. Cell Rep. 2016;15:2651–2664. PMID:27292645.
  • Yang SH, Kalkan T, Morissroe C, et al. Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency. Cell Rep. 2014;7:1968–1981. PMID:24931607.
  • Wang N, Wang Y, Xie Y, et al. OTX2 impedes self-renewal of porcine iPS cells through downregulation of NANOG expression. Cell Death Discov. 2016;2:16090. PMID:27924227.
  • Kaur R, Aiken C, Morrison LC, et al. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells. Dis Model Mech. 2015;8:1295–1309. PMID:26398939.
  • Fujishiro SH, Nakano K, Mizukami Y, et al. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev. 2013;22:473–482. PMID:22889279.
  • Rosati J, Ferrari D, Altieri F, et al. Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies. Cell Death Dis. 2018;9:937. PMID:30224709.
  • Ma Y, Yu T, Cai Y, et al. Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discov. 2018;4:21. PMID:29531818.
  • Sone M, Morone N, Nakamura T, et al. Hybrid cellular metabolism coordinated by Zic3 and Esrrb synergistically enhances induction of naive pluripotency. Cell Metab. 2017;25:1103–1117e6. PMID: 28467928.
  • Shi W, Wang H, Pan G, et al. Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. J Biol Chem. 2006;281:23319–23325. PMID:16714766.
  • Buecker C, Srinivasan R, Wu Z, et al. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell. 2014;14:838–853. PMID:24905168.
  • Pan X, Cang X, Dan S, et al. Site-specific disruption of the Oct4/Sox2 protein interaction reveals coordinated mesendodermal differentiation and the epithelial-mesenchymal transition. J Biol Chem. 2016;291:18353–18369. PMID:27369080.
  • Wang R, Hu Y, Song G, et al. MiR-206 regulates neural cells proliferation and apoptosis via Otx2. Cell Physiol Biochem. 2012;29:381–390. PMID:22508046.
  • Choi SW, Kim JJ, Seo MS, et al. miR-410 inhibition Induces RPE differentiation of amniotic epithelial stem cells via overexpression of OTX2 and RPE65. Stem Cell Rev. 2015;11:376–386. PMID:25351180.
  • Stolzenburg LR, Wachtel S, Dang H, et al. miR-1343 attenuates pathways of fibrosis by targeting the TGF-beta receptors. Biochem J. 2016;473:245–256. PMID:26542979.
  • Mullen AC, Wrana JL. TGF-beta family signaling in embryonic and somatic stem-cell renewal and differentiation. Cold Spring Harb Perspect Biol. 2017;9. PMID: 28108485. DOI:10.1101/cshperspect.a022186
  • Huang X, Lu S. MicroR-545 mediates colorectal cancer cells proliferation through up-regulating epidermal growth factor receptor expression in HOTAIR long non-coding RNA dependent. Mol Cell Biochem. 2017;431:45–54. PMID:28364379.
  • Liu Z, Dou C, Yao B, et al. Ftx non coding RNA-derived miR-545 promotes cell proliferation by targeting RIG-I in hepatocellular carcinoma. Oncotarget. 2016;7:25350–25365. PMID:26992218.
  • Acampora D, Di Giovannantonio LG, Simeone A. Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development. 2013;140:43–55. PMID:23154415.
  • Adachi K, Suemori H, Yasuda SY, et al. Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells. 2010;15:455–470. PMID:20384793.
  • Masui S, Nakatake Y, Toyooka Y, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9:625–635. PMID:17515932.
  • Panaliappan TK, Wittmann W, Jidigam VK, et al. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development. 2018;145. PMID: 29352015. DOI:10.1242/dev.153791
  • Fong H, Hohenstein KA, Donovan PJ. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells. 2008;26:1931–1938. PMID:18388306.
  • Liu S, Bou G, Sun R, et al. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev Dyn. 2015;244:619–627. PMID:25619399.
  • Zhang T, Duan J, Zhang L, et al. LXRalpha promotes hepatosteatosis in part via activation of MicroRNA-378 transcription and inhibition of Ppargc1beta expression. Hepatology. 2018. PMID: 30281809. DOI:10.1002/hep.30301
  • Pang Y, Liu J, Li X, et al. MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J Cell Mol Med. 2018;22:6262–6274. PMID:30324719.
  • Gherzi R, Briata P, Boncinelli E, et al. The human homeodomain protein OTX2 binds to the human tenascin-C promoter and trans-represses its activity in transfected cells. DNA Cell Biol. 1997;16:559–567. PMID:9174161.
  • Yu T, Ma Y, Wang H. EpCAM intracellular domain promotes porcine cell reprogramming by upregulation of pluripotent gene expression via beta-catenin signaling. Sci Rep. 2017;7:46315. PMID:28393933.
  • Xiao S, Xie D, Cao X, et al. Comparative epigenomic annotation of regulatory DNA. Cell. 2012;149:1381–1392. PMID:22682255.
  • Zhang S, Xie Y, Cao H, et al. Common microRNA-mRNA interactions exist among distinct porcine iPSC lines independent of their metastable pluripotent states. Cell Death Dis. 2017;8:e3027. PMID:29048434.
  • Zhang X, Liu X, Liu C, et al. Identification and characterization of microRNAs involved in ascidian larval metamorphosis. BMC Genomics. 2018;19:168. PMID:29490613.
  • Li Y, Wan L, Bi S, et al. Identification of drought-responsive MicroRNAs from roots and leaves of alfalfa by high-throughput sequencing. Genes (Basel). 2017;8:E119. PMID: 28406444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.