3,137
Views
15
CrossRef citations to date
0
Altmetric
Review

Strategic labelling approaches for RNA single-molecule spectroscopy

, &
Pages 1119-1132 | Received 25 Oct 2018, Accepted 04 Mar 2019, Published online: 21 Apr 2019

References

  • Ha T, Enderle T, Ogletree DF, et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A. 1996;93:6264–6268.
  • Russell R, Zhuang X, Babcock HP, et al. Exploring the folding landscape of a structured RNA. Proc Natl Acad Sci U S A. 2002;99:155–160.
  • Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–795.
  • Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.
  • Zhuang X. Single-molecule RNA science. Annu Rev Biophys Biomol Struct. 2005;34:399–414.
  • Betzig E. Single molecules, cells, and super-resolution optics (nobel lecture). Angew Chem. 2015;54:8034–8053.
  • Hell SW. Nanoscopy with focused light (nobel lecture). Angew Chem. 2015;54:8054–8066.
  • Moerner WE. Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (nobel lecture). Angew Chem. 2015;54:8067–8093.
  • Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19:780–782.
  • Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–1645.
  • Hanne J, Zila V, Heilemann M, et al. Super-resolved insights into human immunodeficiency virus biology. FEBS Lett. 2016;590:1858–1876.
  • Sydor AM, Czymmek KJ, Puchner EM, et al. Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol. 2015;25:730–748.
  • Ishigaki M, Iketani M, Sugaya M, et al. STED super-resolution imaging of mitochondria labeled with TMRM in living cells. Mitochondrion. 2016;28:79–87.
  • Spahn C, Glaesmann M, Gao Y, et al. Sequential super-resolution imaging of bacterial regulatory proteins: the nucleoid and the cell membrane in single, fixed E. coli cells. Methods Mol Biol. 2017;1624:269–289.
  • Kim JY, Kim C, Lee NK. Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering. Nat Commun. 2015;6:6992.
  • Pal P, Lesoine JF, Lieb MA, et al. A novel immobilization method for single protein spFRET studies. Biophys J. 2005;89:L11–L13.
  • Lata S, Reichel A, Brock R, et al. High-affinity adaptors for switchable recognition of histidine-tagged proteins. J Am Chem Soc. 2005;127:10205–10215.
  • Hengesbach M, Kim NK, Feigon J, et al. Single-molecule FRET reveals the folding dynamics of the human telomerase RNA pseudoknot domain. Angew Chem. 2012;51:5876–5879.
  • Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nat Methods. 2008;5:507–516.
  • Sustarsic M, Kapanidis AN. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr Opin Struct Biol. 2015;34:52–59.
  • Ashbridge B, Orte A, Yeoman JA, et al. Single-molecule analysis of the human telomerase RNA.dyskerin interaction and the effect of dyskeratosis congenita mutations. Biochemistry. 2009;48:10858–10865.
  • Orte A, Clarke R, Balasubramanian S, et al. Determination of the fraction and stoichiometry of femtomolar levels of biomolecular complexes in an excess of monomer using single-molecule, two-color coincidence detection. Anal Chem. 2006;78:7707–7715.
  • Helm M, Porcher S. Chemical synthesis of DNA and RNA containing modified nucleotides. In: Grosjean H, editor. DNA and RNA modification enzymes: comparative structure, mechanism, functions, cellular interactions and evolution. Austin: Landes Bioscience; 2009. p. 550–559.
  • Scaringe SA, Wincott FE, Caruthers MH. Novel RNA synthesis method using 5‘-O-Silyl-2‘-O-orthoester protecting groups. J Am Chem Soc. 1998;120:11820–11821.
  • Akiyama BM, Stone MD. Assembly of complex RNAs by splinted ligation. Methods Enzymol. 2009;469:27–46.
  • Hengesbach M, Kobitski A, Voigts-Hoffmann F, et al. RNA intramolecular dynamics by single-molecule FRET. Curr Protoc Nucleic Acid Chem. 2008;34: Chapter 11:Unit 11 2.
  • Kershaw CJ, O’Keefe RT. Splint ligation of RNA with T4 DNA ligase. Methods Mol Biol. 2012;941:257–269.
  • Buttner L, Javadi-Zarnaghi F, Hobartner C. Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work. J Am Chem Soc. 2014;136:8131–8137.
  • Nakajima N, Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem. 1995;6:123–130.
  • Holstein JM, Anhauser L, Rentmeister A. Modifying the 5ʹ-Cap for click reactions of eukaryotic mRNA and to tune translation efficiency in living cells. Angew Chem. 2016;55:10899–10903.
  • Muttach F, Masing F, Studer A, et al. New AdoMet analogues as tools for enzymatic transfer of photo-cross-linkers and capturing RNA-Protein interactions. Chemistry. 2017;23:5988–5993.
  • Hartmann RK, Bindereif A, Schön A, et al. Handbook of RNA biochemistry. Weinheim: Wiley-VCH; 2015.
  • Winz ML, Samanta A, Benzinger D, et al. Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry. Nucleic Acids Res. 2012;40:e78.
  • Martin G, Keller W. Tailing and 3ʹ-end labeling of RNA with yeast poly(A) polymerase and various nucleotides. Rna. 1998;4:226–230.
  • Keyhani S, Goldau T, Blumler A, et al. Chemo-enzymatic synthesis of position-specifically modified RNA for biophysical studies including light control and NMR spectroscopy. Angew Chem. 2018;57:12017–12021.
  • Zhao M, Steffen FD, Borner R, et al. Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Res. 2018;46:e13.
  • Piccirilli JA, Krauch T, Moroney SE, et al. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature. 1990;343:33–37.
  • Malyshev DA, Romesberg FE. The expanded genetic alphabet. Angew Chem. 2015;54:11930–11944.
  • Seo YJ, Matsuda S, Romesberg FE. Transcription of an expanded genetic alphabet. J Am Chem Soc. 2009;131:5046–5047.
  • Someya T, Ando A, Kimoto M, et al. Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry. Nucleic Acids Res. 2015;43:6665–6676.
  • Dhami K, Malyshev DA, Ordoukhanian P, et al. Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet. Nucleic Acids Res. 2014;42:10235–10244.
  • Li L, Degardin M, Lavergne T, et al. Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J Am Chem Soc. 2014;136:826–829.
  • Eggert F, Kulikov K, Domnick C, et al. Iluminated by foreign letters - Strategies for site-specific cyclopropene modification of large functional RNAs via in vitro transcription. Methods. 2017;120:17–27.
  • Edenberg ER, Downey M, Toczyski D. Polymerase stalling during replication, transcription and translation. Curr Biol. 2014;24:R445–R452.
  • Guo Q, Nayak D, Brieba LG, et al. Major conformational changes during T7RNAP transcription initiation coincide with, and are required for, promoter release. J Mol Biol. 2005;353:256–270.
  • Lyakhov DL, He B, Zhang X, et al. Pausing and termination by bacteriophage T7 RNA polymerase. J Mol Biol. 1998;280:201–213.
  • Liu Y, Holmstrom E, Zhang J, et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature. 2015;522:368–372.
  • Liu Y, Holmstrom E, Yu P, et al. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat Protoc. 2018;13:987–1005.
  • Dedecker P, Mo GC, Dertinger T, et al. Widely accessible method for superresolution fluorescence imaging of living systems. Proc Natl Acad Sci U S A. 2012;109:10909–10914.
  • Moen I, Jevne C, Wang J, et al. Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation. BMC Cancer. 2012;12:21.
  • Tiwari DK, Nagai T. Smart fluorescent proteins: innovation for barrier-free superresolution imaging in living cells. Dev Growth Differ. 2013;55:491–507.
  • Bao G, Rhee WJ, Tsourkas A. Fluorescent probes for live-cell RNA detection. Annu Rev Biomed Eng. 2009;11:25–47.
  • Warner KD, Chen MC, Song W, et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat Struct Mol Biol. 2014;21:658–663.
  • Babendure JR, Adams SR, Tsien RY. Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc. 2003;125:14716–14717.
  • Paige JS, Wu KY, Jaffrey SR. RNA mimics of green fluorescent protein. Science. 2011;333:642–646.
  • Filonov GS, Moon JD, Svensen N, et al. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc. 2014;136:16299–16308.
  • Dolgosheina EV, Jeng SC, Panchapakesan SS, et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem Biol. 2014;9:2412–2420.
  • Zhang J, Fei J, Leslie BJ, et al. Tandem spinach array for mRNA imaging in living bacterial cells. Sci Rep. 2015;5:17295.
  • Jepsen MDE, Sparvath SM, Nielsen TB, et al. Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat Commun. 2018;9:18.
  • Autour A, Jeng S, Cawte A, et al. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells. Nat Commun. 2018;9:656.
  • Smith GJ, Sosnick TR, Scherer NF, et al. Efficient fluorescence labeling of a large RNA through oligonucleotide hybridization. Rna. 2005;11:234–239.
  • Schmitz AG, Zelger-Paulus S, Gasser G, et al. Strategy for internal labeling of large RNAs with minimal perturbation by using fluorescent PNA. Chembiochem Eur J Chem Biol. 2015;16:1302–1306.
  • Xi C, Balberg M, Boppart SA, et al. Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. Appl Environ Microbiol. 2003;69:5673–5678.
  • Zheng J, Yang R, Shi M, et al. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem Soc Rev. 2015;44:3036–3055.
  • Hovelmann F, Gaspar I, Ephrussi A, et al. Brightness enhanced DNA FIT-probes for wash-free RNA imaging in tissue. J Am Chem Soc. 2013;135:19025–19032.
  • Kohler O, Jarikote DV, Seitz O. Forced intercalation probes (FIT Probes): thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. Chembiochem Eur J Chem Biol. 2005;6:69–77.
  • Mannack LV, Eising S, Rentmeister A. Current techniques for visualizing RNA in cells. F1000Res. 2016;5:775.
  • Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem. 2001;40:2004–2021.
  • Huisgen R. 1,3‐dipolar cycloadditions. Past and future. Angew Chem. 1963;2:565–632.
  • Huisgen R. Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure Appl Chem. 1989;61:613–628.
  • Rostovtsev VV, Green LG, Fokin VV, et al. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem. 2002;41:2596–2599.
  • Tornoe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67:3057–3064.
  • Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126:15046–15047.
  • Laughlin ST, Baskin JM, Amacher SL, et al. In vivo imaging of membrane-associated glycans in developing zebrafish. Science. 2008;320:664–667.
  • Meier H, Petersen H, Kolshorn H. Chem Ber. 1980;113:2398.
  • Turner RB, Jarrett AD, Goebel P, et al. Heats of hydrogenation. IX. Cyclic acetylenes and some miscellaneous olefins. J Am Chem Soc. 1973;95:790.
  • Evans HL, Slade RL, Carroll L, et al. Copper-free click–a promising tool for pre-targeted PET imaging. Chem Comm. 2012;48:991–993.
  • Neef AB, Schultz C. Selective fluorescence labeling of lipids in living cells. Angew Chem. 2009;48:1498–1500.
  • Plass T, Milles S, Koehler C, et al. Genetically encoded copper-free click chemistry. Angew Chem. 2011;50:3878–3881.
  • Horner KA, Valette NM, Webb ME. Strain-promoted reaction of 1,2,4-triazines with bicyclononynes. Chemistry. 2015;21:14376–14381.
  • Hogan DJ, Riordan DP, Gerber AP, et al. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 2008;6:e255.
  • Joo C, Ha T. Labeling proteins for single-molecule FRET. Cold Spring Harb Protoc. 2012;2012:1009–1012.
  • Kim Y, Ho SO, Gassman NR, et al. Efficient site-specific labeling of proteins via cysteines. Bioconjug Chem. 2008;19:786–791.
  • Adio S, Sharma H, Senyushkina T, et al. Dynamics of ribosomes and release factors during translation termination in E. coli. eLife. 2018;7:e34252.
  • Lai WC, Ermolenko DN. Ensemble and single-molecule FRET studies of protein synthesis. Methods. 2018;137:37–48.
  • Anderson JC, Wu N, Santoro SW, et al. An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci U S A. 2004;101:7566–7571.
  • Liu DR, Schultz PG. Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci U S A. 1999;96:4780–4785.
  • Young TS, Ahmad I, Yin JA, et al. An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol. 2010;395:361–374.
  • Chen PR, Groff D, Guo J, et al. A facile system for encoding unnatural amino acids in mammalian cells. Angew Chem. 2009;48:4052–4055.
  • Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc. 2002;124:9026–9027.
  • Nguyen DP, Lusic H, Neumann H, et al. Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. J Am Chem Soc. 2009;131:8720–8721.
  • Nikic-Spiegel I. Genetic code expansion- and click chemistry-based site-specific protein labeling for intracellular DNA-PAINT imaging. Methods Mol Biol. 2018;1728:279–295.
  • Jungmann R, Avendano MS, Woehrstein JB, et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods. 2014;11:313–318.
  • Nikic I, Estrada Girona G, Kang JH, et al. Debugging eukaryotic genetic code expansion for site-specific click-PAINT super-resolution microscopy. Angew Chem. 2016;55:16172–16176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.