1,761
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Exploration of prognosis-related microRNA and transcription factor co-regulatory networks across cancer types

, , , , , , , ORCID Icon, ORCID Icon & show all
Pages 1010-1021 | Received 05 Feb 2019, Accepted 10 Apr 2019, Published online: 03 May 2019

References

  • Gwilliam B, Keeley V, Todd C, et al. Development of prognosis in palliative care study (PiPS) predictor models to improve prognostication in advanced cancer: prospective cohort study. BMJ. 2011 Aug 25;343:d4920. PubMed PMID: 21868477; PubMed Central PMCID: PMCPMC3162041.
  • Li J, Lenferink AE, Deng Y, et al. Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun. 2010 Jul 13;1:34. PubMed PMID: 20975711; PubMed Central PMCID: PMCPMC2972666. eng.
  • Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–945.
  • Subramanian J, Simon R. What should physicians look for in evaluating prognostic gene-expression signatures? Nat Rev Clin Oncol. 2010 Jun;7(6):327–334. PubMed PMID: 20421890; eng.
  • Andrews E, Wang Y, Xia T, et al. Contextual Refinement of Regulatory Targets Reveals Effects on Breast Cancer Prognosis of the Regulome. PLoS Comput Biol. 2017 Jan;13(1):e1005340. PubMed PMID: 28103241; PubMed Central PMCID: PMCPMC5289608. eng.
  • Defoort J, Van de Peer Y, Vermeirssen V. Function, dynamics and evolution of network motif modules in integrated gene regulatory networks of worm and plant. Nucleic Acids Res. 2018 Jul 27;46(13):6480–6503. PubMed PMID: 29873777; PubMed Central PMCID: PMCPMC6061849. eng.
  • Mei S, Meyer CA, Zheng R, et al. Cistrome Cancer: A Web Resource for Integrative Gene Regulation Modeling in Cancer. Cancer Res. 2017 Nov 1;77(21):e19–e22. PubMed PMID: 29092931; PubMed Central PMCID: PMCPMC5826647. eng.
  • Shi L, Wang Y, Lu Z, et al. miR-127 promotes EMT and stem-like traits in lung cancer through a feed-forward regulatory loop. Oncogene. 2017 Mar 23;36(12):1631–1643. PubMed PMID: 27869168; eng.
  • Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in Development and Disease: background, Mechanisms, and Therapeutic Approaches. Physiol Rev. 2016 Oct;96(4):1297–1325. PubMed PMID: 27535639; eng.
  • Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther. 2017 Apr;172:34–49. PubMed PMID: 27916656; eng.
  • Shigeyasu K, Toden S, Zumwalt TJ, et al. Emerging Role of MicroRNAs as Liquid Biopsy Biomarkers in Gastrointestinal Cancers. Clin Cancer Res. 2017 May 15;23(10):2391–2399. 10.1158/1078-0432.ccr-16-1676. PubMed PMID: 28143873; PubMed Central PMCID: PMCPMC5433899. eng.
  • Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet. 2016 Dec;17(12):719–732. PubMed PMID: 27795564; eng.
  • Jiang W, Mitra R, Lin CC, et al. Systematic dissection of dysregulated transcription factor-miRNA feed-forward loops across tumor types. Brief Bioinform. 2016 Nov;17(6):996–1008. PubMed PMID: 26655252; PubMed Central PMCID: PMCPMC5142013. eng.
  • Mullany LE, Herrick JS, Wolff RK, et al. Transcription factor-microRNA associations and their impact on colorectal cancer survival. Mol Carcinog. 2017 Nov;56(11):2512–2526. PubMed PMID: 28667784; PubMed Central PMCID: PMCPMC5633497. eng.
  • Wang H, Luo J, Liu C, et al. Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer. BMC Bioinformatics. 2017 Sep 2;18(1):388. PubMed PMID: 28865443; PubMed Central PMCID: PMCPMC5581471. eng.
  • Fulciniti M, Amodio N, Bandi RL, et al. miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth. Blood Cancer J. 2016 Jan 15;6:e380. PubMed PMID: 26771806; PubMed Central PMCID: PMCPMC4742623. eng.
  • Kong LM, Liao CG, Zhang Y, et al. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res. 2014 Jul 15;74(14):3764–3778. PubMed PMID: 24906624; eng.
  • Furlong LI. Human diseases through the lens of network biology. Trends Genet. 2013 Mar;29(3):150–159. PubMed PMID: 23219555; eng.
  • Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):11980–11985. PubMed PMID: 14530388; PubMed Central PMCID: PMCPMC218699. eng.
  • Zhang HM, Kuang S, Xiong X, et al. Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases. Brief Bioinform. 2015 Jan;16(1):45–58. PubMed PMID: 24307685; eng.
  • Farahani M, Rezaei-Tavirani M, Zali H, et al. Deciphering the transcription factor-microRNA-target gene regulatory network associated with graphene oxide cytotoxicity. Nanotoxicology. 2018 Oct;16:1–13. PubMed PMID: 30325693; eng.
  • Li R, Chen H, Jiang S, et al. CMTCN: a web tool for investigating cancer-specific microRNA and transcription factor co-regulatory networks. PeerJ. 2018;6:e5951. PubMed PMID: 30473937; PubMed Central PMCID: PMCPMC6237116. eng.
  • Barabasi AL, Oltvai ZN. Network biology: understanding the cell‘s functional organization. Nat Rev Genet. 2004 Feb;5(2):101–113. PubMed PMID: 14735121; eng.
  • Wang Y, Goodison S, Li X, et al. Prognostic cancer gene signatures share common regulatory motifs. Sci Rep. 2017 Jul 6;7(1):4750. PubMed PMID: 28684851; PubMed Central PMCID: PMCPMC5500535. eng.
  • Anaya J, Reon B, Chen WM, et al. A pan-cancer analysis of prognostic genes. PeerJ. 2015;3:e1499. PubMed PMID: 27047702; PubMed Central PMCID: PMCPMC4815555. eng.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–674. PubMed PMID: 21376230; eng.
  • Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5): 1016–1036. PubMed PMID: 28560055; PubMed Central PMCID: PMCPMC5446472. eng.
  • Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014 Mar 12;15(3):266–282. PubMed PMID: 24629334; PubMed Central PMCID: PMCPMC3992243. eng.
  • Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science (New York, NY). 2017 Aug 18;357(6352). PubMed PMID: 28818916; eng.
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000 Jan 7;100(1):57–70. PubMed PMID: 10647931; eng.
  • Sasahira T, Kirita T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int J Mol Sci. 2018 Aug 16;19(8). PubMed PMID: 30115834; PubMed Central PMCID: PMCPMC6121568. eng.
  • Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012 Jan;226(2):352–364. PubMed PMID: 21990031; eng.
  • Dominguez D, Tsai YH, Gomez N, et al. A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer. Cell Res. 2016 Aug;26(8):946–962. PubMed PMID: 27364684; PubMed Central PMCID: PMCPMC4973334. eng.
  • Tsai LH, Chen PM, Cheng YW, et al. LKB1 loss by alteration of the NKX2-1/p53 pathway promotes tumor malignancy and predicts poor survival and relapse in lung adenocarcinomas. Oncogene. 2014 Jul 17;33(29):3851–3860. PubMed PMID: 23995788; eng.
  • Kleinschmidt EG, Schlaepfer DD. Focal adhesion kinase signaling in unexpected places. Curr Opin Cell Biol. 2017 Apr;45:24–30. PubMed PMID: 28213315; PubMed Central PMCID: PMCPMC5482783. eng.
  • Korkut A, Zaidi S, Kanchi RS, et al. A pan-cancer analysis reveals high-frequency genetic alterations in mediators of signaling by the TGF-beta superfamily. Cell Syst. 2018 Oct 24;7(4):422–437.e7. PubMed PMID: 30268436; eng.
  • Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018 Apr 5;173(2):321–337.e10. PubMed PMID: 29625050; PubMed Central PMCID: PMCPMC6070353. eng.
  • Zitnik M, Sosic R, Leskovec J. Prioritizing network communities. Nat Commun. 2018 Jun 29;9(1):2544. PubMed PMID: 29959323; PubMed Central PMCID: PMCPMC6026212. eng.
  • Wu G, Stein L. A network module-based method for identifying cancer prognostic signatures. Genome Biol. 2012 Dec 10;13(12):R112. PubMed PMID: 23228031; PubMed Central PMCID: PMCPMC3580410. eng.
  • Collin M, Dickinson R, Bigley V. Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol. 2015 Apr;169(2):173–187. PubMed PMID: 25707267; PubMed Central PMCID: PMCPMC4409096. eng.
  • Zhu D, Jiang XH, Jiang YH, et al. Amplification and overexpression of TP63 and MYC as biomarkers for transition of cervical intraepithelial neoplasia to cervical cancer. Int J Gynecological Cancer. 2014 May;24(4):643–648. PubMed PMID: 24662128; eng.
  • Huang J, Ni S, Li D, et al. An insertion/deletion polymorphism at miRNA-122 binding site in the IL1A is associated with a reduced risk of cervical squamous cell carcinoma. Genet Test Mol Biomarkers. 2015 Jun;19(6):331–334. PubMed PMID: 25955681; eng.
  • Suarez-Carmona M, Lesage J, Cataldo D, et al. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol. 2017 Jul;11(7):805–823. PubMed PMID: 28599100; PubMed Central PMCID: PMCPMC5496491. eng.
  • Yun J, Song SH, Kim HP, et al. Dynamic cohesin-mediated chromatin architecture controls epithelial-mesenchymal plasticity in cancer. EMBO Rep. 2016 Sep;17(9):1343–1359. PubMed PMID: 27466323; PubMed Central PMCID: PMCPMC5007572. eng.
  • George JT, Jolly MK, Xu S, et al. Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res. 2017 Nov 15;77(22):6415–6428. PubMed PMID: 28947416; PubMed Central PMCID: PMCPMC5690883. eng.
  • Li XR, Chu HJ, Lv T, et al. miR-342-3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer. FEBS Lett. 2014 Aug 25;588(17):3298–3307. PubMed PMID: 25066298; eng.
  • Xu X, Liu T, Wu J, et al. Transferrin receptor-involved HIF-1 signaling pathway in cervical cancer. Cancer Gene Ther. 2019 Jan 17. PubMed PMID: 30651591; eng.
  • Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017 Jan 4;45(D1):D777–d783. PubMed PMID: 27899578; PubMed Central PMCID: PMCPMC5210583. eng.
  • Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014 Jan 23;505(7484):495–501. PubMed PMID: 24390350; PubMed Central PMCID: PMCPMC4048962. eng.
  • Gundem G, Perez-Llamas C, Jene-Sanz A, et al. IntOGen: integration and data mining of multidimensional oncogenomic data. Nat Methods. 2010 Feb;7(2):92–93. PubMed PMID: 20111033; eng.
  • Horn H, Lawrence MS, Chouinard CR, et al. NetSig: network-based discovery from cancer genomes. Nat Methods. 2018 Jan;15(1):61–66. PubMed PMID: 29200198; PubMed Central PMCID: PMCPMC5985961. eng.
  • Hu Y, Dingerdissen H, Gupta S, et al. Identification of key differentially expressed MicroRNAs in cancer patients through pan-cancer analysis. Comput Biol Med. 2018 Dec 1;103:183–197. PubMed PMID: 30384176; PubMed Central PMCID: PMCPMC6279243. eng.
  • Hamilton MP, Rajapakshe K, Hartig SM, et al. Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat Commun. 2013;4:2730. PubMed PMID: 24220575; PubMed Central PMCID: PMCPMC3868236. eng.
  • Plaisier CL, O‘Brien S, Bernard B, et al. Causal mechanistic regulatory network for glioblastoma deciphered using systems genetics network analysis. Cell Syst. 2016 Aug;3(2):172–186. PubMed PMID: 27426982; PubMed Central PMCID: PMCPMC5001912. eng.
  • Wong NW, Chen Y, Chen S, et al. OncomiR: an online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics. 2018 Feb 15;34(4):713–715. PubMed PMID: 29028907; PubMed Central PMCID: PMCPMC5860608. eng.
  • Jiang C, Xuan Z, Zhao F, et al. TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res. 2007;35(Database issue):D137–D140.
  • Zheng G, Tu K, Yang Q, et al. ITFP: an integrated platform of mammalian transcription factors. Bioinformatics. 2008;24(20):2416–2417.
  • Bovolenta LA, Acencio ML, Lemke N. HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. Bmc Genomics. 2012;13(1):405.
  • Han H, Cho JW, Lee S, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2017;46(Databaseissue):D380–D386.
  • Jiang Q, Wang Y, Hao Y, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(1):D98–104.
  • Xiao F, Zuo Z, Cai G, et al. miRecords: an integrated resource for microRNA–target interactions. Nucleic Acids Res. 2009;37(Databaseissue):D105.
  • Chou CH, Shrestha S, Yang CD, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 2017;46(Databaseissue):D296–D302.
  • Hua X, Tang R, Xu X, et al. mirTrans: a resource of transcriptional regulation on microRNAs for human cell lines. Nucleic Acids Res. 2018 Jan 4;46(D1):D168–d174. PubMed PMID: 29077896; PubMed Central PMCID: PMCPMC5753250. eng.
  • Bandyopadhyay S, Bhattacharyya M. PuTmiR: a database for extracting neighboring transcription factors of human microRNAs. BMC Bioinformatics. 2010 Apr 15;11:190.
  • Tong Z, Cui Q, Wang J, et al. TransmiR v2.0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019 Jan 8;47(D1):D253–d258. PubMed PMID: 30371815; PubMed Central PMCID: PMCPMC6323981. eng.
  • Yates B, Braschi B, Gray KA, et al. Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res. 2017 Jan 4;45(D1):D619–d625. PubMed PMID: 27799471; PubMed Central PMCID: PMCPMC5210531. eng.
  • Ravasi T, Suzuki H, Cannistraci CV, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 2010 Mar 5;140(5):744–752. PubMed PMID: 20211142; PubMed Central PMCID: PMCPMC2836267. eng.
  • Nicolle R, Radvanyi F, Elati M. CoRegNet: reconstruction and integrated analysis of co-regulatory networks. Bioinformatics. 2015 Sep 15;31(18):3066–3068. PubMed PMID: 25979476; PubMed Central PMCID: PMCPMC4565029. eng.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019 Jan 8;47(D1):D155–d162. PubMed PMID: 30423142; PubMed Central PMCID: PMCPMC6323917. eng.
  • Katarzyna T, Patrycja C, Maciej W. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1A):68–77.
  • Samur MK. RTCGAToolbox: a new tool for exporting tcga firehose data. Plos One. 2014;9(9):e106397.
  • Wernicke S, Rasche F. FANMOD: a tool for fast network motif detection. Bioinformatics. 2006;22(9):1152–1153.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498–2504. PubMed PMID: 14597658; PubMed Central PMCID: PMCPMC403769. eng.
  • Su G, Kuchinsky A, Morris JH, et al. GLay: community structure analysis of biological networks. Bioinformatics. 2010 Dec 15;26(24):3135–3137. PubMed PMID: 21123224; PubMed Central PMCID: PMCPMC2995124. eng.
  • Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012 May;16(5):284–287. PubMed PMID: 22455463; PubMed Central PMCID: PMCPMC3339379. eng.
  • Liberzon A, Subramanian A, Pinchback R, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011 Jun 15;27(12):1739–1740. PubMed PMID: 21546393; PubMed Central PMCID: PMCPMC3106198. eng.
  • Backes C, Khaleeq QT, Meese E, et al. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res. 2016;44(WebServer issue):W110–W116.
  • Knijnenburg TA, Bismeijer T, Wessels LF, et al. A multilevel pan-cancer map links gene mutations to cancer hallmarks. Chin J Cancer. 2015 Sep 14;34(10):439–449. PubMed PMID: 26369414; PubMed Central PMCID: PMCPMC4593384. eng.