1,013
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

CBP80/20-dependent translation initiation factor (CTIF) inhibits HIV-1 Gag synthesis by targeting the function of the viral protein Rev

, , , , , , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 745-758 | Received 06 Jul 2020, Accepted 30 Sep 2020, Published online: 25 Oct 2020

References

  • Rojas-Araya B, Ohlmann T, Soto-Rifo R. Translational control of the HIV unspliced genomic RNA. Viruses. 2015;7(8):4326–4351.
  • Ohlmann T, Mengardi C, Lopez-Lastra M. Translation initiation of the HIV-1 mRNA. Translation (Austin). 2014;2(2):e960242.
  • Hidalgo L, Swanson CM. Regulation of human immunodeficiency virus type 1 (HIV-1) mRNA translation. Biochem Soc Trans. 2017;45(2):353–364.
  • de Breyne S, Ohlmann T. Focus on translation initiation of the HIV-1 mRNAs. Int J Mol Sci. 2018;20(1). DOI:10.3390/ijms20010101
  • Geballe AP, Gray MK. Variable inhibition of cell-free translation by HIV-1 transcript leader sequences. Nucleic Acids Res. 1992;20:4291–4297.
  • Svitkin YV, Pause A, Sonenberg N. La autoantigen alleviates translational repression by the 5ʹLeader sequence of the human immunodeficiency virus type1 mRNA. J Virol. 1994;68:7001–7007.
  • Miele G, Mouland A, Harrison GP, et al. The Human immunodeficiency virus type 1 5ʹPackaging signal structure affects translation but does not functionas an internal ribosome entry site structure. J Virol. 1996;70(2):944–951.
  • Gendron K, Ferbeyre G, Heveker N, et al. The activity of the HIV-1 IRES is stimulated by oxidative stress and controlled by a negative regulatory element. Nucleic Acids Res. 2011;39(3):902–912.
  • Brasey A, Lopez-Lastra M, Ohlmann T, et al. The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol. 2003;77(7):3939–3949.
  • Vallejos M, Deforges J, Plank TD, et al. Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors. Nucleic Acids Res. 2011;39(14):6186–6200.
  • Plank TD, Whitehurst JT, Kieft JS. Cell type specificity and structural determinants of IRES activity from the 5ʹ leaders of different HIV-1 transcripts. Nucleic Acids Res. 2013;41(13):6698–6714.
  • Amorim R, Costa SM, Cavaleiro NP, et al. HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease. PLoS One. 2014;9(2):e88619.
  • Soto-Rifo R, Limousin T, Rubilar PS, et al. Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation. Nucleic Acids Res. 2012;40(6):2653–2667.
  • Soto-Rifo R, Rubilar PS, Ohlmann T. The DEAD-box helicase DDX3 substitutes for the cap-binding protein eIF4E to promote compartmentalized translation initiation of the HIV-1 genomic RNA. Nucleic Acids Res. 2013;41(12):6286–6299.
  • Monette A, Valiente-Echeverria F, Rivero M, et al. Dual mechanisms of translation initiation of the full-length HIV-1 mRNA contribute to gag synthesis. PLoS One. 2013;8(7):e68108.
  • Soto-Rifo R, Rubilar PS, Limousin T, et al. DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. Embo J. 2012;31(18):3745–3756.
  • Berkhout B, Arts K, Abbink TE. Ribosomal scanning on the 5ʹ-untranslated region of the human immunodeficiency virus RNA genome. Nucleic Acids Res. 2011;39(12):5232–5244.
  • Sharma A, Yilmaz A, Marsh K, et al. Thriving under stress: selective translation of HIV-1 structural protein mRNA during Vpr-mediated impairment of eIF4E translation activity. PLoS Pathog. 2012;8(3):e1002612.
  • Toro-Ascuy D, Rojas-Araya B, Garcia-de-Gracia F, et al. A Rev-CBP80-eIF4AI complex drives gag synthesis from the HIV-1 unspliced mRNA. Nucleic Acids Res. 2018;46(21):11539–11552.
  • Gonatopoulos-Pournatzis T, Cowling VH. Cap-binding complex (CBC). Biochem J. 2014;457(2):231–242.
  • Gebhardt A, Habjan M, Benda C, et al. mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nat Commun. 2015;6:8192.
  • Izaurralde E, Lewis J, McGuigan C, et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell. 1994;78:657–668.
  • Hosoda N, Kim YK, Lejeune F, et al. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol. 2005;12(10):893–901.
  • Hwang J, Sato H, Tang Y, et al. UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Mol Cell. 2010;39(3):396–409.
  • Ishigaki Y, Li X, Serin G, et al. Evidence for a pioneer round of mRNA translation-mRNAs subject to nonsense-mediated decayin mammalian cells are bound by CBP80 and CBP20. Cell. 2001;106:11.
  • Kim KM, Cho H, Choi K, et al. A new MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-dependent translation. Genes Dev. 2009;23(17):2033–2045.
  • Choe J, Oh N, Park S, et al. Translation initiation on mRNAs bound by nuclear cap-binding protein complex CBP80/20 requires interaction between CBP80/20-dependent translation initiation factor and eukaryotic translation initiation factor 3g. J Biol Chem. 2012;287(22):18500–18509.
  • Choe J, Ryu I, Park OH, et al. eIF4AIII enhances translation of nuclear cap-binding complex-bound mRNAs by promoting disruption of secondary structures in 5ʹUTR. Proc Natl Acad Sci U S A. 2014;111(43):E4577–4586.
  • Park J, Park Y, Ryu I, et al. Misfolded polypeptides are selectively recognized and transported toward aggresomes by a CED complex. Nat Commun. 2017;8:15730.
  • Felkner RH, Roth MJ. Mutational analysis of the N-linked glycosylation sites of the su envelope protein of moloney murine leukemia-virus. J Virol. 1992;66:4258–4264.
  • Fröhlich A, Rojas-Araya B, Pereira-Montecinos C, et al. DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain. Biochim Biophys Acta. 2016;1859(5):719–730.
  • Dias SM, Wilson KF, Rojas KS, et al. The molecular basis for the regulation of the cap-binding complex by the importins. Nat Struct Mol Biol. 2009;16(9):930–937.
  • Toohey K, Wehrly K, Nishio J, et al. Human immunodeficiency virus envelope V1 and V2 regions influence replication efficiency in macrophages by affecting virus spread. Virology. 1995;213:70–79.
  • Wehrly K, Chesebro B. Methods: a companion to methods in enzymology. Methods HIV Res. 1997;12.
  • Chesebro B, Wehrly K, Nishio J, et al. Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol. 1992;66(11):6547.
  • Hierholzer JC, Killinngton RA. Virus isolation and quantitation. Virol Methods Manual. 1996;25–46.
  • Schmidt EK, Clavarino G, Ceppi M, et al. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6(4):275–277.
  • Valiente-Echeverria F, Melnychuk L, Vyboh K, et al. eEF2 and Ras-GAP SH3 domain-binding protein (G3BP1) modulate stress granule assembly during HIV-1 infection. Nat Commun. 2014;5:4819.
  • Katoh K, Misawa K, Kuma K, et al. MAFFT- a novel method for rapid multiple sequencealignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066.
  • Schneider TD, Stephens M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18:6097–6100.
  • Crooks GE, Hon G, Chandonia JM, et al. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–1190.
  • Samarajiwa SA, Forster S, Auchettl K, et al. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res. 2009;37(Database issue):D852–857.
  • Mougel M, Akkawi C, Chamontin C, et al. NXF1 and CRM1 nuclear export pathways orchestrate nuclear export, translation and packaging of murine leukaemia retrovirus unspliced RNA. RNA Biol. 2020;17(4):528–538.
  • Pessel-Vivares L, Ferrer M, Laine S, et al. MLV requires Tap/NXF1-dependent pathway to export its unspliced RNA to the cytoplasm and to express both spliced and unspliced RNAs. Retrovirology 2014;11:21.
  • Sakuma T, Davila JI, Malcolm JA, et al. Murine leukemia virus uses NXF1 for nuclear export of spliced and unspliced viral transcripts. J Virol. 2014;88(8):4069–4082.
  • Pollard VW, Malim MH. THE HIV-1 REV PROTEIN. Annu Rev Microbiol. 1998;52:491–532.
  • Malim MH, Böhnlein S, Fenrick R, et al. Functional comparison of the Rev trans-activators encoded by different primate immunodeficiencyvirus species. Proc Natl Acad Sci U S A. 1989;86:8222–8226.
  • Gallego J, Greatorex J, Zhang H, et al. Rev binds specifically to a purine loop in the SL1 region of the HIV-1 leader RNA. J Biol Chem. 2003;278(41):40385–40391.
  • Groom HCT, Anderson EC, Dangerfield JA, et al. Rev regulates translation of human immunodeficiency virus type 1 RNAs. J Gen Virol. 2009;90(Pt 5):1141–1147.
  • Chen J, Liu Y, Wu B, et al. Visualizing the translation and packaging of HIV-1 full-length RNA. Proc Natl Acad Sci U S A. 2020;117(11):6145–6155.
  • Mocquet V, Durand S, Jalinot P. How retroviruses escape the nonsense-mediated mRNA decay. AIDS Res Hum Retroviruses. 2015;31(10):948–958.
  • Ajamian L, Abel K, Rao S, et al. HIV-1 recruits UPF1 but excludes UPF2 to promote nucleocytoplasmic export of the genomic RNA. Biomolecules. 2015;5(4):2808–2839.
  • McCauley SM, Kim K, Nowosielska A, et al. Intron-containing RNA from the HIV-1 provirus activates type I interferon and inflammatory cytokines. Nat Commun. 2018;9(1):5305.
  • Akiyama H, Miller CM, Ettinger CR, et al. HIV-1 intron-containing RNA expression induces innate immune activation and T cell dysfunction. Nat Commun. 2018;9(1):3450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.