2,200
Views
11
CrossRef citations to date
0
Altmetric
Review

MHC Class III RNA Binding Proteins and Immunity

& ORCID Icon
Pages 640-646 | Received 19 Aug 2020, Accepted 01 Dec 2020, Published online: 20 Dec 2020

References

  • Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94. PubMed PMID: 24679528
  • Cao S, Saha M, Zhao W, et al. Insights into the structure and assembly of the bacteriophage 29 double-stranded DNA packaging motor. J Virol. 2014;88(8):3986–3996. Epub 2014/01/08. PubMed PMID: 24403593; PubMed Central PMCID: PMCPMC3993773.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. PubMed PMID: 8252621
  • Molleston JM, Cherry S.Attacked from all sides: RNA decay in antiviral defense. Viruses. 2017; 9(1). Epub 2017/01/06. PubMed PMID: 28054965; PubMed Central PMCID: PMCPMC5294971.
  • Bisogno LS, Keene JD. RNA regulons in cancer and inflammation. Curr Opin Genet Dev. 2018;48:97–103. Epub 2017/11/28. PubMed PMID: 29175729; PubMed Central PMCID: PMCPMC6489128.
  • Ivanov P, Anderson P. Post-transcriptional regulatory networks in immunity. Immunol Rev. 2013;253(1):253–272. Epub 2013/04/05. PubMed PMID: 23550651; PubMed Central PMCID: PMCPMC6989036.
  • Sheehy AM, Gaddis NC, Choi JD, et al. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418(6898):646–650. Epub 2002/07/14. PubMed PMID: 12167863.
  • Sharrock J, Sun JC. Innate immunological memory: from plants to animals. Curr Opin Immunol. 2020;62:69–78. Epub 2020/01/14. PubMed PMID: 31931432; PubMed Central PMCID: PMCPMC7067670.
  • Garcia-Blanco MA. Know thyself. RNA. 2015;21(4):525–526. PubMed PMID: 25780123; PubMed Central PMCID: PMCPMC4371265
  • Olson KE, Blair CD. Arbovirus-mosquito interactions: RNAi pathway. Curr Opin Virol. 2015;15:119–126. Epub 2015/12/03. PubMed PMID: 26629932; PubMed Central PMCID: PMCPMC4765169.
  • Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–485. Epub 2011/04/10. PubMed PMID: 21478870; PubMed Central PMCID: PMCPMC3409588.
  • Meylan E, Tschopp J. Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell. 2006;22(5):561–569. PubMed PMID: 16762830
  • Hu J, Wang X, Xing Y, et al. Origin and development of oligoadenylate synthetase immune system. BMC Evol Biol. 2018;18(1):201. Epub 2018/12/27. PubMed PMID: 30587119; PubMed Central PMCID: PMCPMC6307210.
  • Schwartz SL, Conn GL. RNA regulation of the antiviral protein 2ʹ-5ʹ-oligoadenylate synthetase. Wiley Interdiscip Rev RNA. 2019;10(4):e1534. Epub 2019/04/17. PubMed PMID: 30989826; PubMed Central PMCID: PMCPMC6585406.
  • Hornung V, Hartmann R, Ablasser A, et al. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat Rev Immunol. 2014;14(8):521–528. Epub 2014/07/18. PubMed PMID: 25033909; PubMed Central PMCID: PMCPMC7097587.
  • Wimmer F, Beisel CL. CRISPR-cas systems and the paradox of self-targeting spacers. Front Microbiol. 2019;10:3078. Epub 2020/01/22. PubMed PMID: 32038537; PubMed Central PMCID: PMCPMC6990116.
  • Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83. Epub 2019/12/19. PubMed PMID: 31857715.
  • Salerno F, Wolkers MC. T-cells require post-transcriptional regulation for accurate immune responses. Biochem Soc Trans. 2015;43(6):1201–1207. Epub 2015/11/29. PubMed PMID: 26614661.
  • Mallory MJ, Jackson J, Weber B, et al. Signal- and development-dependent alternative splicing of LEF1 in T cells is controlled by CELF2. Mol Cell Biol. 2011;31(11):2184–2195. Epub 2011/03/28. PubMed PMID: 21444716; PubMed Central PMCID: PMCPMC3133246.
  • Mallory MJ, McClory SP, Chatrikhi R, et al. Reciprocal regulation of hnRNP C and CELF2 through translation and transcription tunes splicing activity in T cells. Nucleic Acids Res. 2020;48(10):5710–5719. PubMed PMID: 32338744; PubMed Central PMCID: PMCPMC7261192
  • Wells ML, Perera L, Blackshear PJ. An ancient family of RNA-binding proteins: still important! Trends Biochem Sci. 2017;42(4):285–296. Epub 2017/01/14. PubMed PMID: 28096055; PubMed Central PMCID: PMCPMC5376222.
  • Allcock RJ, Williams JH, Price P. The central MHC gene, BAT1, may encode a protein that down-regulates cytokine production. Genes Cells. 2001;6(5):487–494. PubMed PMID: 11380625
  • Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5(12):889–899. PubMed PMID: 15573121
  • Xie T, Rowen L, Aguado B, et al. Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome Res. 2003;13(12):2621–2636. PubMed PMID: 14656967; PubMed Central PMCID: PMCPMC403804
  • Lehner B, Semple JI, Brown SE, et al. Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics. 2004;83(1):153–167. PubMed PMID: 14667819
  • Zhou D, Lai M, Luo A, et al.An RNA metabolism and surveillance quartet in the major histocompatibility complex. Cells. 2019; 8(9). Epub 2019/08/30. PubMed PMID: 31480283; PubMed Central PMCID: PMCPMC6769589.
  • Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 2002;30(7):1427–1464. PubMed PMID: 11917006; PubMed Central PMCID: PMCPMC101826
  • Spies T, Blanck G, Bresnahan M, et al. A new cluster of genes within the human major histocompatibility complex. Science. 1989;243(4888):214–217. PubMed PMID: 2911734
  • Peelman LJ, Chardon P, Nunes M, et al. The BAT1 gene in the MHC encodes an evolutionarily conserved putative nuclear RNA helicase of the DEAD family. Genomics. 1995;26(2):210–218. PubMed PMID: 7601445
  • Fugger L, Morling N, Ryder LP, et al. Restriction fragment length polymorphism of two HLA-B-associated transcripts genes in five autoimmune diseases. Hum Immunol. 1991;30(1):27–31. PubMed PMID: 1672123
  • Fleckner J, Zhang M, Valcárcel J, et al. U2AF65 recruits a novel human DEAD box protein required for the U2 snRNP-branchpoint interaction. Genes Dev. 1997;11(14):1864–1872. PubMed PMID: 9242493
  • Jensen TH, Boulay J, Rosbash M, et al. The DECD box putative ATPase Sub2p is an early mRNA export factor. Curr Biol. 2001;11(21):1711–1715. PubMed PMID: 11696331
  • MacMorris M, Brocker C, Blumenthal T. UAP56 levels affect viability and mRNA export in Caenorhabditis elegans. RNA. 2003;9(7):847–857. PubMed PMID: 12810918; PubMed Central PMCID: PMCPMC1370451
  • Herold A, Teixeira L, Izaurralde E. Genome-wide analysis of nuclear mRNA export pathways in Drosophila. Embo J. 2003;22(10):2472–2483. PubMed PMID: 12743041; PubMed Central PMCID: PMCPMC155991
  • Huang C, Liang D, Tatomer DC, et al. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018;32(9–10):639–644. Epub 2018/05/17. PubMed PMID: 29773557; PubMed Central PMCID: PMCPMC6004072.
  • Galarza-Muñoz G, Briggs FBS, Evsyukova I, et al. Human epistatic interaction controls IL7R splicing and increases multiple sclerosis risk. Cell. 2017;169(1):72–84.e13. PubMed PMID: 28340352; PubMed Central PMCID: PMCPMC5456452
  • Nakata D, Nakao S, Nakayama K, et al. The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation. Biochem Biophys Res Commun. 2017;483(1):271–276. Epub 2016/12/23. PubMed PMID: 28025139.
  • Pérez-Calero C, Bayona-Feliu A, Xue X, et al. UAP56/DDX39B is a major cotranscriptional RNA-DNA helicase that unwinds harmful R loops genome-wide. Genes Dev. 2020;34(13–14):898–912. Epub 2020/05/21. PubMed PMID: 32439635; PubMed Central PMCID: PMCPMC7328515.
  • Pryor A, Tung L, Yang Z, et al. Growth-regulated expression and G0-specific turnover of the mRNA that encodes URH49, a mammalian DExH/D box protein that is highly related to the mRNA export protein UAP56. Nucleic Acids Res. 2004;32(6):1857–1865. Epub 2004/03/26. PubMed PMID: 15047853; PubMed Central PMCID: PMCPMC390356.
  • Gregory SG, Schmidt S, Seth P, et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet. 2007;39(9):1083–1091. Epub 2007/07/31. PubMed PMID: 17660817.
  • Lundström W, Highfill S, Walsh ST, et al. Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proc Natl Acad Sci U S A. 2013;110(19):E1761–70. Epub 2013/04/22. PubMed PMID: 23610432; PubMed Central PMCID: PMCPMC3651437.
  • International Genetics of Ankylosing Spondylitis C, Cortes A, Hadler J, Pointon JP, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730–738. Epub 2013/06/12. PubMed PMID: 23749187; PubMed Central PMCID: PMCPMC3757343.
  • Nakamura M, Nishida N, Kawashima M, et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet. 2012;91(4):721–728. Epub 2012/09/25. PubMed PMID: 23000144; PubMed Central PMCID: PMCPMC3484650.
  • Zhou Z, Sun B, Huang S, et al. Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death Dis. 2019;10(7):503. Epub 2019/06/26. PubMed PMID: 31243263; PubMed Central PMCID: PMCPMC6594938.
  • Li I, Chen YG. Emerging roles of circular RNAs in innate immunity. Curr Opin Immunol. 2020;68:107–115. Epub 2020/11/12. PubMed PMID: 33176221.
  • Chen YG, Kim MV, Chen X, et al. Sensing self and foreign circular RNAs by intron identity. Mol Cell. 2017;67(2):228–38 e5. Epub 2017/06/20. PubMed PMID: 28625551; PubMed Central PMCID: PMCPMC5610545.
  • Liu CX, Li X, Nan F, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell. 2019;177(4):865–80 e21. Epub 2019/04/30. PubMed PMID: 31031002.
  • Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429. Epub 2016/08/20. PubMed PMID: 27539542; PubMed Central PMCID: PMCPMC4992165.
  • Shen YJ, Le Bert N, Chitre AA, et al. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep. 2015;11(3):460–473. Epub 2015/04/09. PubMed PMID: 25865892.
  • Tuteja N, Tarique M, Trivedi DK, et al. Stress-induced Oryza sativa BAT1 dual helicase exhibits unique bipolar translocation. Protoplasma. 2015;252(6):1563–1574. Epub 2015/03/15. PubMed PMID: 25772680.
  • Banerji J, Sands J, Strominger JL, et al. A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc Natl Acad Sci U S A. 1990;87(6):2374–2378. PubMed PMID: 2156268; PubMed Central PMCID: PMCPMC53689
  • Wu R, Li A, Sun B, et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29(1):23–41. Epub 2018/12/04. PubMed PMID: 30514900; PubMed Central PMCID: PMCPMC6318280.
  • Xu R, Li Q, Liu R, et al. Association analysis of the MHC in Lupus Nephritis. J Am Soc Nephrol. 2017;28(11):3383–3394. Epub 2017/07/28. PubMed PMID: 28754791; PubMed Central PMCID: PMCPMC5661284.
  • Goudey B, Abraham G, Kikianty E, et al. Interactions within the MHC contribute to the genetic architecture of celiac disease. PLoS One. 2017;12(3):e0172826. Epub 2017/03/10. PubMed PMID: 28282431; PubMed Central PMCID: PMCPMC5345796.
  • Hashimoto M, Nakamura N, Obayashi H, et al. Genetic contribution of the BAT2 gene microsatellite polymorphism to the age-at-onset of insulin-dependent diabetes mellitus. Hum Genet. 1999;105(3):197–199. PubMed PMID: 10987645
  • Kiledjian M. Eukaryotic RNA 5ʹ-End NAD. Trends Cell Biol. 2018;28(6):454–464. Epub 2018/03/12. PubMed PMID: 29544676; PubMed Central PMCID: PMCPMC5962413.
  • Doamekpor SK, Grudzien-Nogalska E, Mlynarska-Cieslak A, et al. DXO/Rai1 enzymes remove 5ʹ-end FAD and dephospho-CoA caps on RNAs. Nucleic Acids Res. 2020;48(11):6136–6148. PubMed PMID: 32374864; PubMed Central PMCID: PMCPMC7293010
  • Jiao X, Chang JH, Kilic T, et al. A mammalian pre-mRNA 5ʹ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol Cell. 2013;50(1):104–115. Epub 2013/03/21. PubMed PMID: 23523372; PubMed Central PMCID: PMCPMC3630477.
  • Amador-Cañizares Y, Bernier A, Wilson JA, et al. miR-122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5ʹ end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Res. 2018;46(10):5139–5158. PubMed PMID: 29672716; PubMed Central PMCID: PMCPMC6007490
  • Zhou L, Hang J, Zhou Y, et al. Crystal structures of the Lsm complex bound to the 3ʹ end sequence of U6 small nuclear RNA. Nature. 2014;506(7486):116–120. Epub 2013/11/17. PubMed PMID: 24240276.
  • Montemayor EJ, Virta JM, Hayes SM, et al. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes. RNA. 2020;26(10):1400–1413. Epub 2020/06/09. PubMed PMID: 32518066.
  • Vindry C, Weil D, Standart N. Pat1 RNA-binding proteins: multitasking shuttling proteins. Wiley Interdiscip Rev RNA. 2019;10(6):e1557. Epub 2019/06/24. PubMed PMID: 31231973.
  • Catalá R, Carrasco-López C, Perea-Resa C, et al. Emerging roles of LSM complexes in posttranscriptional regulation of plant response to abiotic stress. Front Plant Sci. 2019;10:167. Epub 2019/02/19. PubMed PMID: 30873189; PubMed Central PMCID: PMCPMC6401655.
  • Lee SG, Lee I, Park SH, et al. Identification and characterization of a human cDNA homologous to yeast SKI2. Genomics. 1995;25(3):660–666. PubMed PMID: 7759100
  • Aly HH, Suzuki J, Watashi K, et al. RNA exosome complex regulates stability of the hepatitis B virus X-mRNA transcript in a non-stop-mediated (NSD) RNA quality control mechanism. J Biol Chem. 2016;291(31):15958–15974. Epub 2016/06/08. PubMed PMID: 27281821; PubMed Central PMCID: PMCPMC4965548.
  • Chen CY, Gherzi R, Ong SE, et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell. 2001;107(4):451–464. PubMed PMID: 11719186
  • Tuck AC, Rankova A, Arpat AB, et al. Mammalian RNA decay pathways are highly specialized and widely linked to translation. Mol Cell. 2020;77(6):1222–36 e13. Epub 2020/02/13. PubMed PMID: 32048998; PubMed Central PMCID: PMCPMC7083229.
  • Molleston JM, Sabin LR, Moy RH, et al. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev. 2016;30(14):1658–1670. Epub 2016/07/31. PubMed PMID: 27474443; PubMed Central PMCID: PMCPMC4973295.
  • Eckard SC, Rice GI, Fabre A, et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat Immunol. 2014;15(9):839–845. Epub 2014/07/30. PubMed PMID: 25064072; PubMed Central PMCID: PMCPMC4139417.
  • Fabre A, Charroux B, Martinez-Vinson C, et al. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet. 2012;90(4):689–692. Epub 2012/03/22. PubMed PMID: 22444670; PubMed Central PMCID: PMCPMC3322239.
  • Vély F, Barlogis V, Marinier E, et al. Combined immunodeficiency in patients with trichohepatoenteric syndrome. Front Immunol. 2018;9:1036. Epub 2018/05/11. PubMed PMID: 29868001; PubMed Central PMCID: PMCPMC5958188.
  • Kammermeier J, Dziubak R, Pescarin M, et al. Phenotypic and genotypic characterisation of inflammatory bowel disease presenting before the age of 2 years. J Crohns Colitis. 2017;11(1):60–69. Epub 2016/06/14. PubMed PMID: 27302973; PubMed Central PMCID: PMCPMC5885808.
  • Ashton JJ, Andreoletti G, Coelho T, et al. Identification of variants in genes associated with single-gene inflammatory bowel disease by whole-exome sequencing. Inflamm Bowel Dis. 2016;22(10):2317–2327. PubMed PMID: 27537055
  • Fernando MM, Stevens CR, Sabeti PC, et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet. 2007;3(11):e192. Ep ub 2007/11/14. PubMed PMID: 17997607; PubMed Central PMCID: PMCPMC2065882.
  • Lévi-Strauss M, Carroll MC, Steinmetz M, et al. A previously undetected MHC gene with an unusual periodic structure. Science. 1988;240(4849):201–204. PubMed PMID: 3353717
  • Gibson BA, Zhang Y, Jiang H, et al. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science. 2016;353(6294):45–50. Epub 2016/06/02. PubMed PMID: 27256882; PubMed Central PMCID: PMCPMC5540732.
  • Vos SM, Pöllmann D, Caizzi L, et al. Architecture and RNA binding of the human negative elongation factor. Elife. Epub 2016/06/10 2016;5: PubMed PMID: 27282391; PubMed Central PMCID: PMCPMC4940160.
  • Ozer A, Tome JM, Friedman RC, et al. Quantitative assessment of RNA-protein interactions with high-throughput sequencing-RNA affinity profiling. Nat Protoc. 2015;10(8):1212–1233. Epub 2015/07/16. PubMed PMID: 26182240; PubMed Central PMCID: PMCPMC4714542.
  • Yamaguchi Y, Takagi T, Wada T, et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell. 1999;97(1):41–51. PubMed PMID: 10199401
  • Narita T, Yung TM, Yamamoto J, et al. NELF interacts with CBC and participates in 3ʹ end processing of replication-dependent histone mRNAs. Mol Cell. 2007;26(3):349–365. PubMed PMID: 17499042
  • Hočevar K, Maver A, Kunej T, et al. Sarcoidosis related novel candidate genes identified by multi-omics integrative analyses. OMICS. 2018;22(5):322–331. Epub 2018/04/24. PubMed PMID: 29688803.
  • Xu J, Grant G, Sabin LR, et al. Transcriptional pausing controls a rapid antiviral innate immune response in Drosophila. Cell Host Microbe. 2012;12(4):531–543. Epub 2012/10/23. PubMed PMID: 23084920; PubMed Central PMCID: PMCPMC3479682.
  • Ingelfinger D, Arndt-Jovin DJ, Lührmann R, et al. The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA. 2002;8(12):1489–1501. PubMed PMID: 12515382; PubMed Central PMCID: PMCPMC1370355
  • Yin C, Zhu B, Li X, et al. Reply to ‘‘evidence that STK19 Is Not an NRAS-dependent melanoma driver”. Cell. 2020;181(6):1406–9.e2. PubMed PMID: 32531246
  • Rodríguez-Martínez M, Boissiére T, Noe Gonzalez M, et al. Evidence That STK19 is not an NRAS-dependent Melanoma Driver. Cell. 2020;181(6):1395–405.e11. PubMed PMID: 32531245; PubMed Central PMCID: PMCPMC7298618
  • Kraja AT, Chasman DI, North KE, et al. Pleiotropic genes for metabolic syndrome and inflammation. Mol Genet Metab. 2014;112(4):317–338. Epub 2014/05/09. PubMed PMID: 24981077; PubMed Central PMCID: PMCPMC4122618.
  • Schilders G, van Dijk E, Pruijn GJ. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res. 2007;35(8):2564–2572. Epub 2007/04/04. PubMed PMID: 17412707; PubMed Central PMCID: PMCPMC1885644.
  • Selleri L, DiMartino J, van Deursen J, et al. The TALE homeodomain protein Pbx2 is not essential for development and long-term survival. Mol Cell Biol. 2004;24(12):5324–5331. PubMed PMID: 15169896; PubMed Central PMCID: PMCPMC419882

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.