3,897
Views
0
CrossRef citations to date
0
Altmetric
Review

Tricks and threats of RNA viruses – towards understanding the fate of viral RNA

ORCID Icon, ORCID Icon & ORCID Icon
Pages 669-687 | Received 25 Aug 2020, Accepted 09 Jan 2021, Published online: 22 Feb 2021

References

  • Ahlquist P. Parallels among Positive-Strand RNA Viruses, Reverse-Transcribing Viruses and Double-Stranded RNA Viruses. Nature Reviews Microbiology. 2006;4(5):371–382.
  • Pichlmair A, Lassnig C, Eberle C-A, et al. IFIT1 Is an Antiviral Protein That Recognizes 5′-Triphosphate RNA. Nat Immunol. 2011;12(7):624–630.
  • Chi H, Flavell RA. Innate Recognition of Non-Self Nucleic Acids. Genome Biol. 2008;9(3):211.
  • Platnich JM, Muruve DA. NOD-like Receptors and Inflammasomes: A Review of Their Canonical and Non-Canonical Signaling Pathways. Arch Biochem Biophys. 2019;670:4–14.
  • Bauernfried S, Scherr MJ, Pichlmair A, et al. Human NLRP1 Is a Sensor for Double-Stranded RNA. Science. 2020;eabd0811. 10.1126/science.abd0811
  • Rehwinkel J, Reis E Sousa C. RIGorous Detection: exposing Virus Through RNA Sensing. Science. 2010;327(5963):284–286.
  • Habjan M, Pichlmair A. Cytoplasmic Sensing of Viral Nucleic Acids. Curr Opin Virol. 2015;11:31–37.
  • Hyde JL, Diamond MS. Innate Immune Restriction and Antagonism of Viral RNA Lacking 2׳-O Methylation. Virology. 2015;479–480:66–74.
  • Warminski M, Sikorski PJ, Kowalska J, et al. Applications of Phosphate Modification and Labeling to Study (m)RNA Caps. Top Curr Chem Cham. 2017;375(1):16.
  • Galloway A, Cowling VH. mRNA cap regulation in mammalian cell function and fate. Biochimica Et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2019;1862(3):270–279.
  • Nachtergaele S, He C. Chemical Modifications in the Life of an MRNA Transcript. Annu Rev Genet. 2018;52(1):349–372.
  • Weissman D, Pardi N, Muramatsu H, et al. Purification of In Vitro Transcribed Long RNA. InSynthetic Messenger RNA and Cell Metabolism Modulation. Rabinovich PM, editor. Methods in Molecular Biology Humana Press:Totowa, NJ. 2013. Vol. 969. 43–54.
  • Karikó K, Muramatsu H, Ludwig J, et al. Generating the Optimal MRNA for Therapy: HPLC Purification Eliminates Immune Activation and Improves Translation of Nucleoside-Modified, Protein-Encoding MRNA. Nucleic Acids Res. 2011;39(21):e142–e142.
  • Yoneyama M, Kikuchi M, Matsumoto K, et al. Shared and Unique Functions of the DExD/H-Box Helicases RIG-I, MDA5, and LGP2 in Antiviral Innate Immunity. J Immunol. 2005;175(5):2851–2858.
  • Imran M, Waheed Y, Manzoor S, et al. Interaction of Hepatitis C Virus Proteins with Pattern Recognition Receptors. Virol J. 2012;9(1):126.
  • Gitlin L, Barchet W, Gilfillan S, et al. Essential Role of Mda-5 in Type I IFN Responses to Polyriboinosinic:Polyribocytidylic Acid and Encephalomyocarditis Picornavirus. Proc Natl Acad Sci. 2006;103(22):8459–8464.
  • Faul EJ, Wanjalla CN, Suthar MS, et al. Rabies Virus Infection Induces Type I Interferon Production in an IPS-1 Dependent Manner While Dendritic Cell Activation Relies on IFNAR Signaling. PLoS Pathog. 2010;6(7):e1001016.
  • Fredericksen BL, Keller BC, Fornek J, et al. Establishment and Maintenance of the Innate Antiviral Response to West Nile Virus Involves Both RIG-I and MDA5 Signaling through IPS-1. J Virol. 2008;82(2):609–616.
  • Sen A, Pruijssers AJ, Dermody TS, et al. The Early Interferon Response to Rotavirus Is Regulated by PKR and Depends on MAVS/IPS-1, RIG-I, MDA-5, and IRF3. J Virol. 2011;85(8):3717–3732.
  • Gitlin L, Benoit L, Song C, et al. Melanoma Differentiation-Associated Gene 5 (MDA5) Is Involved in the Innate Immune Response to Paramyxoviridae Infection In Vivo. PLoS Pathog. 2010;6(1):e1000734.
  • Si-Tahar M, Blanc F, Furio L, et al. Protective Role of LGP2 in Influenza Virus Pathogenesis. J Infect Dis. 2014;210(2):214–223.
  • Kawai T, Akira S. Toll-like Receptor and RIG-1-like Receptor Signaling. Ann N Y Acad Sci. 2008;1143(1):1–20.
  • Guillot L, Le Goffic R, Bloch S, et al. Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-Stranded RNA and Influenza A Virus. J Biol Chem. 2005;280(7):5571–5580.
  • Diebold SS. Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science. 2004;303(5663):1529–1531.
  • Lund JM, Alexopoulou L, Sato A, et al. Recognition of Single-Stranded RNA Viruses by Toll-like Receptor 7. Proc Natl Acad Sci. 2004;101(15):5598–5603.
  • Amici C, La Frazia S, Brunelli C, et al. Inhibition of Viral Protein Translation by Indomethacin in Vesicular Stomatitis Virus Infection: role of EIF2α Kinase PKR. Cell Microbiol. 2015;17(9):1391–1404.
  • Kimura T, Katoh H, Kayama H, et al. Ifit1 Inhibits Japanese Encephalitis Virus Replication through Binding to 5ʹ Capped 2ʹ-O Unmethylated RNA. J Virol. 2013;87(18):9997–10003.
  • Johnson B, VanBlargan LA, Xu W, et al. Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability. Immunity. 2018;48(3):487–499.
  • Davis BM, Fensterl V, Lawrence TM, et al. Ifit2 Is a Restriction Factor in Rabies Virus Pathogenicity. J Virol. 2017;91(17):e00889–17.
  • Diamond MS. IFIT1: A Dual Sensor and Effector Molecule That Detects Non-2′-O Methylated Viral RNA and Inhibits Its Translation. Cytokine Growth Factor Rev. 2014;25(5):543–550.
  • Gee P, Chua PK, Gevorkyan J, et al. Essential Role of the N-Terminal Domain in the Regulation of RIG-I ATPase Activity. J Biol Chem. 2008;283(14):9488–9496.
  • Kowalinski E, Lunardi T, McCarthy AA, et al. Structural Basis for the Activation of Innate Immune Pattern-Recognition Receptor RIG-I by Viral RNA. Cell. 2011;147(2):423–435.
  • Jiang F, Ramanathan A, Miller MT, et al. Structural Basis of RNA Recognition and Activation by Innate Immune Receptor RIG-I. Nature. 2011;479(7373):423–427.
  • Saito T, Hirai R, Loo Y-M, et al. Regulation of Innate Antiviral Defenses through a Shared Repressor Domain in RIG-I and LGP2. Proc Natl Acad Sci. 2007;104(2):582–587.
  • Ramanathan A, Devarkar SC, Jiang F, et al. The Autoinhibitory CARD2-Hel2i Interface of RIG-I Governs RNA Selection. Nucleic Acids Res. 2016;44(2):896–909.
  • Cui S, Eisenächer K, Kirchhofer A, et al. Terminal Regulatory Domain Is the RNA 5′-Triphosphate Sensor of RIG-I. Mol Cell. 2008;29(2):169–179.
  • Loo Y-M, Fornek J, Crochet N, et al. RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity. J Virol. 2008;82(1):335–345.
  • Kato H, Takeuchi O, Sato S, et al. Differential Roles of MDA5 and RIG-I Helicases in the Recognition of RNA Viruses. Nature. 2006;441(7089):101–105.
  • Goubau D, Schlee M, Deddouche S, et al. Antiviral Immunity via RIG-I-Mediated Recognition of RNA Bearing 5′-Diphosphates. Nature. 2014;514(7522):372–375.
  • Picard-Jean F, Brand C, Tremblay-Létourneau M, et al. 2ʹ-O-Methylation of the MRNA Cap Protects RNAs from Decapping and Degradation by DXO. PloS One. 2018;13(3):e0193804–e0193804.
  • Kato H, Takeuchi O, Mikamo-Satoh E, et al. Recognition of Double-Stranded Ribonucleic Acids by Retinoic Acid–Inducible Gene-I and Melanoma Differentiation–Associated Gene 5. J Exp Med. 2008;205(7):1601–1610.
  • Baum A, Sachidanandam R, García-Sastre A. Preference of RIG-I for Short Viral RNA Molecules in Infected Cells Revealed by next-Generation Sequencing. Proc Natl Acad Sci. 2010;107(37):16303–16308.
  • Devarkar SC, Wang C, Miller MT, et al. Structural Basis for M7G Recognition and 2ʹ-O-Methyl Discrimination in Capped RNAs by the Innate Immune Receptor RIG-I. Proc Natl Acad Sci. 2016;113(3):596–601.
  • Saito T, Owen DM, Jiang F, et al. Innate Immunity Induced by Composition-Dependent RIG-I Recognition of Hepatitis C Virus RNA. Nature. 2008;454(7203):523–527.
  • Malathi K, Saito T, Crochet N, et al. RNase L Releases a Small RNA from HCV RNA That Refolds into a Potent PAMP. RNA. 2010;16(11):2108–2119.
  • Lu M, Zhang Z, Xue M, et al. Enables Viral RNA to Escape Recognition by RNA Sensor RIG-I. Nat Microbiol. 2020;5(4):584–598.
  • Peisley A, Lin C, Wu B, et al. Cooperative Assembly and Dynamic Disassembly of MDA5 Filaments for Viral DsRNA Recognition. Proc Natl Acad Sci. 2011;108(52):21010–21015.
  • Berke IC, Modis Y. MDA5 Cooperatively Forms Dimers and ATP-Sensitive Filaments upon Binding Double-Stranded RNA: MDA5 Forms Dimers and Filaments on Binding DsRNA. Embo J. 2012;31(7):1714–1726.
  • Peisley A, Jo MH, Lin C, et al. Kinetic Mechanism for Viral DsRNA Length Discrimination by MDA5 Filaments. Proc Natl Acad Sci. 2012;109(49):E3340–E3349.
  • Kang DC, Gopalkrishnan RV, Wu Q, et al. Mda-5: an Interferon-Inducible Putative RNA Helicase with Double-Stranded RNA-Dependent ATPase Activity and Melanoma Growth-Suppressive Properties. Proc Natl Acad Sci. 2002;99(2):637–642.
  • Satoh T, Kato H, Kumagai Y, et al. LGP2 Is a Positive Regulator of RIG-I- and MDA5-Mediated Antiviral Responses. Proc Natl Acad Sci. 2010;107(4):1512–1517.
  • Rothenfusser S, Goutagny N, DiPerna G, et al. The RNA Helicase Lgp2 Inhibits TLR-Independent Sensing of Viral Replication by Retinoic Acid-Inducible Gene-I. J Immunol. 2005;175(8):5260–5268.
  • Murali A, Li X, Ranjith-Kumar CT, et al. Structure and Function of LGP2, a DE X (D/H) Helicase That Regulates the Innate Immunity Response. J Biol Chem. 2008;283(23):15825–15833.
  • Sanchez David RY, Combredet C, Najburg V, et al. LGP2 Binds to PACT to Regulate RIG-I– and MDA5-Mediated Antiviral Responses. Sci Signal. 2019;12(601):eaar3993.
  • Takahashi T, Nakano Y, Onomoto K, et al. Virus Sensor RIG-I Represses RNA Interference by Interacting with TRBP through LGP2 in Mammalian Cells. Genes (Basel). 2018;9(10):511.
  • Dorin D, Bonnet MC, Bannwarth S, et al. The TAR RNA-Binding Protein, TRBP, Stimulates the Expression of TAR-Containing RNAs in Vitro and in Vivo Independently of Its Ability to Inhibit the DsRNA-Dependent Kinase PKR. J Biol Chem. 2003;278(7):4440–4448.
  • Zhang Z, Kim T, Bao M, et al. DDX1, DDX21, and DHX36 Helicases Form a Complex with the Adaptor Molecule TRIF to Sense DsRNA in Dendritic Cells. Immunity. 2011;34(6):866–878.
  • Miyashita M, Oshiumi H, Matsumoto M, et al. DDX60, a DEXD/H Box Helicase, Is a Novel Antiviral Factor Promoting RIG-I-Like Receptor-Mediated Signaling. Mol Cell Biol. 2011;31(18):3802–3819.
  • Oshiumi H, Okamoto M, Fujii K, et al. TLR3/TICAM-1 Pathway Is Mandatory for Innate Immune Responses to Poliovirus Infection. J Immunol. 2011;187(10):5320–5327.
  • Ariumi Y, Kuroki M, Abe K, et al. DDX3 DEAD-Box RNA Helicase Is Required for Hepatitis C Virus RNA Replication. J Virol. 2007;81(24):13922–13926.
  • Li G, Feng T, Pan W, et al. Box RNA Helicase DDX3X Inhibits DENV Replication via Regulating Type One Interferon Pathway. Biochem Biophys Res Commun. 2015;456(1):327–332.
  • Li C, Ge L, Li P, et al. DDX3 Regulates Japanese Encephalitis Virus Replication by Interacting with Viral Un-Translated Regions. Virology. 2014;449:70–81.
  • Brai A, Martelli F, Riva V, et al. DDX3X Helicase Inhibitors as a New Strategy To Fight the West Nile Virus Infection. J Med Chem. 2019;62(5):2333–2347.
  • Thulasi Raman SN, Liu G, Pyo HM, et al. DDX3 Interacts with Influenza A Virus NS1 and NP Proteins and Exerts Antiviral Function through Regulation of Stress Granule Formation. J Virol. 2016;90(7):3661–3675.
  • Bowie A, O’Neill LAJ. The Interleukin-1 Receptor/Toll-like Receptor Superfamily: signal Generators for pro-Inflammatory Interleukins and Microbial Products. J Leukoc Biol. 2000;67(4):508–514.
  • Park B, Brinkmann MM, Spooner E, et al. Proteolytic Cleavage in an Endolysosomal Compartment Is Required for Activation of Toll-like Receptor 9. Nat Immunol. 2008;9(12):1407–1414.
  • Ewald SE, Lee BL, Lau L, et al. The Ectodomain of Toll-like Receptor 9 Is Cleaved to Generate a Functional Receptor. Nature. 2008;456(7222):658–662.
  • Du X, Poltorak A, Wei Y, et al. Three Novel Mammalian Toll-like Receptors: gene Structure, Expression, and Evolution. Eur Cytokine Netw. 2000;11(3):362–371.
  • Hemmi H, Takeuchi O, Kawai T, et al. Recognizes Bacterial DNA. Nature. 2000;408(6813):740–745.
  • Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of Double-Stranded RNA and Activation of NF-ΚB by Toll-like Receptor 3. Nature. 2001;413(6857):732–738.
  • Heil F. Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. Science. 2004;303(5663):1526–1529.
  • Heil F, Ahmad-Nejad P, Hemmi H, et al. Receptor 7 (TLR7)-Specific Stimulus Loxoribine Uncovers a Strong Relationship within the TLR7, 8 and 9 Subfamily. Eur J Immunol. 2003;33(11):2987–2997.
  • Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-Specific Potent Induction of IFN-α by Short Interfering RNA in Plasmacytoid Dendritic Cells through TLR7. Nat Med. 2005;11(3):263–270.
  • Wang JP, Liu P, Latz E, et al. Flavivirus Activation of Plasmacytoid Dendritic Cells Delineates Key Elements of TLR7 Signaling beyond Endosomal Recognition. J Immunol. 2006;177(10):7114–7121.
  • Daud II, Scott ME, Ma Y, et al. Association between Toll-like Receptor Expression and Human Papillomavirus Type 16 Persistence. Int J Cancer. 2011;128(4):879–886.
  • Zhang Y, El-Far M, Dupuy FP, et al. HCV RNA Activates APCs via TLR7/TLR8 While Virus Selectively Stimulates Macrophages Without Inducing Antiviral Responses. Sci Rep. 2016;6:29447.
  • Colak E, Leslie A, Zausmer K, et al. RNA and Imidazoquinolines Are Sensed by Distinct TLR7/8 Ectodomain Sites Resulting in Functionally Disparate Signaling Events. J Immunol. 2014;192(12):5963–5973.
  • Krüger A, Oldenburg M, Chebrolu C, et al. Human TLR8 Senses UR/URR Motifs in Bacterial and Mitochondrial RNA. EMBO Rep. 2015;16(12):1656–1663.
  • Leonard JN, Ghirlando R, Askins J, et al. The TLR3 Signaling Complex Forms by Cooperative Receptor Dimerization. Proc Natl Acad Sci. 2008;105(1):258–263.
  • Gosu V, Son S, Shin D, et al. Insights into the Dynamic Nature of the DsRNA-Bound TLR3 Complex. Sci Rep. 2019;9(1):3652.
  • Bell JK, Askins J, Hall PR, et al. The DsRNA Binding Site of Human Toll-like Receptor 3. Proc Natl Acad Sci. 2006;103(23):8792–8797.
  • Lee HK, Lund JM, Ramanathan B, et al. Autophagy-Dependent Viral Recognition by Plasmacytoid Dendritic Cells. Science. 2007;315(5817):1398–1401.
  • Akira S, Uematsu S, Takeuchi O. Pathogen Recognition and Innate Immunity. Cell. 2006;124(4):783–801.
  • Balachandran S, Roberts PC, Brown LE, et al. Essential Role for the DsRNA-Dependent Protein Kinase PKR in Innate Immunity to Viral Infection. Immunity. 2000;13(1):129–141.
  • Ung TL, Cao C, Lu J, et al. Heterologous Dimerization Domains Functionally Substitute for the Double-Stranded RNA Binding Domains of the Kinase PKR. Embo J. 2001;20(14):3728–3737.
  • Feng F, Yuan L, Wang YE, et al. Crystal Structure and Nucleotide Selectivity of Human IFIT5/ISG58. Cell Res. 2013;23(8):1055–1058.
  • Manche L, Green SR, Schmedt C, et al. Interactions between Double-Stranded RNA Regulators and the Protein Kinase DAI. Mol Cell Biol. 1992;12(11):5238–5248.
  • García MA, Gil J, Ventoso I, et al. Impact of Protein Kinase PKR in Cell Biology: from Antiviral to Antiproliferative Action. Microbiol Mol Biol Rev MMBR. 2006;70(4):1032–1060.
  • Manivannan P, Siddiqui MA, Malathi K. RNase L Amplifies Interferon Signaling by Inducing PKR-Mediated Antiviral Stress Granules. J Virol. 2020. DOI:10.1128/JVI.00205-20.
  • Pham AM, Santa Maria FG, Lahiri T, et al. PKR Transduces MDA5-Dependent Signals for Type I IFN Induction. PLOS Pathog. 2016;12(3):1–27.
  • Langland JO, Pettiford S, Jiang B, et al. Products of the Porcine Group C Rotavirus NSP3 Gene Bind Specifically to Double-Stranded RNA and Inhibit Activation of the Interferon-Induced Protein Kinase PKR. J Virol. 1994;68(6):3821–3829.
  • Schierhorn KL, Jolmes F, Bespalowa J, et al. Influenza A Virus Virulence Depends on Two Amino Acids in the N-Terminal Domain of Its NS1 Protein To Facilitate Inhibition of the RNA-Dependent Protein Kinase PKR. J Virol. 2017;91(10). DOI:10.1128/jvi.00198-17
  • Tu Y-C, Yu C-Y, Liang -J-J, et al. Blocking Double-Stranded RNA-Activated Protein Kinase PKR by Japanese Encephalitis Virus Nonstructural Protein 2A. J Virol. 2012;86(19):10347–10358.
  • Vyas J, Elia A, Clemens MJ. Inhibition of the Protein Kinase PKR by the Internal Ribosome Entry Site of Hepatitis C Virus Genomic RNA. Rna N Y N. 2003;9(7):858–870.
  • Taylor DR. Inhibition of the Interferon- Inducible Protein Kinase PKR by HCV E2 Protein. Science. 1999;285(5424):107–110.
  • François C, Duverlie G, Rebouillat D, et al. Expression of Hepatitis C Virus Proteins Interferes with the Antiviral Action of Interferon Independently of PKR-Mediated Control of Protein Synthesis. J Virol. 2000;74(12):5587–5596.
  • Frese M, Interferon-Induced Effector DE. Proteins and Hepatitis C Virus Replication. Jirillo E editor. Hepatitis C Virus Disease. Springer New York: New York. 2008. 106–129. 10.1007/978-0-387-71376-2_6.
  • Black TL, Safer B, Hovanessian A, et al. 68,000-Mr Protein Kinase Is Highly Autophosphorylated and Activated yet Significantly Degraded during Poliovirus Infection: implications for Translational Regulation. J Virol. 1989;63(5):2244–2251.
  • Chang Y-H, Lau KS, Kuo R-L, et al. DsRNA Binding Domain of PKR Is Proteolytically Released by Enterovirus A71 to Facilitate Viral Replication. Frontiers in Cellular and Infection Microbiology. 2017;7:284.
  • Mears HV, Sweeney TR. Better Together: the Role of IFIT Protein–Protein Interactions in the Antiviral Response. Journal of General Virology. 2018;99(11):1463–1477.
  • Daffis S, Szretter KJ, Schriewer J, et al. 2′-O Methylation of the Viral MRNA Cap Evades Host Restriction by IFIT Family Members. Nature. 2010;468(7322):452–456.
  • Abbas YM, Pichlmair A, Górna MW, et al. Structural Basis for Viral 5′-PPP-RNA Recognition by Human IFIT Proteins. Nature. 2013;494(7435):60–64.
  • Sen GC, Fensterl V. Crystal Structure of IFIT2 (ISG54) Predicts Functional Properties of IFITs. Cell Res. 2012;22(10):1407–1409.
  • Tran V, Ledwith MP, Thamamongood T, et al. Influenza Virus Repurposes the Antiviral Protein IFIT2 to Promote Translation of Viral MRNAs. . Nature Microbiology. 2020;5(12):1490–1503.
  • Sabbah A, Chang TH, Harnack R, et al. Activation of Innate Immune Antiviral Responses by Nod2. Nat Immunol. 2009;10(10):1073–1080.
  • Allen IC, Scull MA, Moore CB, et al. The NLRP3 Inflammasome Mediates In Vivo Innate Immunity to Influenza A Virus through Recognition of Viral RNA. Immunity. 2009;30(4):556–565.
  • Yu C-H, Moecking J, Geyer M, et al. Mechanisms of NLRP1-Mediated Autoinflammatory Disease in Humans and Mice. Journal of Molecular Biology. 2018;430(2):142–152.
  • Feng Q, Hato SV, Langereis MA, et al. MDA5 Detects the Double-Stranded RNA Replicative Form in Picornavirus-Infected Cells. Cell Rep. 2012;2(5):1187–1196.
  • den Boon JA, Organelle-Like Membrane AP. Compartmentalization of Positive-Strand RNA Virus Replication Factories. Annu Rev Microbiol. 2010;64(1):241–256.
  • Romero-Brey I, Bartenschlager R. Membranous Replication Factories Induced by Plus-Strand RNA Viruses. Viruses. 2014;6(7):2826–2857.
  • van der Hoeven B, Oudshoorn D, Koster AJ, et al. Architecture of Arterivirus Replication Organelles. Virus Res. 2016;220:70–90.
  • Scutigliani EM, Kikkert M. Interaction of the Innate Immune System with Positive-Strand RNA Virus Replication Organelles. Cytokine Growth Factor Rev. 2017;37:17–27.
  • Neufeldt CJ, Joyce MA, Van Buuren N, et al. The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites. PLOS Pathog. 2016;12(2):1–28.
  • Al-Mulla HMN, Turrell L, Smith NM, et al. Competitive Fitness in Coronaviruses Is Not Correlated with Size or Number of Double-Membrane Vesicles under Reduced-Temperature Growth Conditions. mBio. 2014;5(2):e01107–13.
  • Collins PL, Fearns R, Graham BS. Respiratory Syncytial Virus: virology, Reverse Genetics, and Pathogenesis of Disease. In:Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Anderson LJ, Graham BS, editors. Current Topics in Microbiology and Immunology Springer Berlin Heidelberg:Berlin, Heidelberg. 2013. Vol. 372. 3–38.
  • Jaafar ZA, Kieft JS. Viral RNA Structure-Based Strategies to Manipulate Translation. Nat Rev Microbiol. 2019;17(2):110–123.
  • Flanegan JB, Petterson RF, Ambros V, et al. Covalent Linkage of a Protein to a Defined Nucleotide Sequence at the 5ʹ-Terminus of Virion and Replicative Intermediate RNAs of Poliovirus. Proc Natl Acad Sci. 1977;74(3):961–965.
  • Lee YF, Nomoto A, Detjen BM, et al. A Protein Covalently Linked to Poliovirus Genome RNA. Proc Natl Acad Sci. 1977;74(1):59–63.
  • Jang SK, Kräusslich HG, Nicklin MJ, et al. Segment of the 5ʹ Nontranslated Region of Encephalomyocarditis Virus RNA Directs Internal Entry of Ribosomes during in Vitro Translation. J Virol. 1988;62(8):2636–2643.
  • Pelletier J, Sonenberg N. Internal Initiation of Translation of Eukaryotic MRNA Directed by a Sequence Derived from Poliovirus RNA. Nature. 1988;334(6180):320–325.
  • Decroly E, Biochemical Principles CB. Inhibitors to Interfere with Viral Capping Pathways. Curr Opin Virol. 2017;24:87–96.
  • Decroly E, Ferron F, Lescar J, et al. Unconventional Mechanisms for Capping Viral MRNA. Nat Rev Microbiol. 2011;10(1):51–65.
  • Liu L, Dong H, Chen H, et al. Flavivirus RNA Cap Methyltransferase: structure, Function, and Inhibition. Front Biol. 2010;5(4):286–303.
  • Bouvet M, Debarnot C, Imbert I, et al. In Vitro Reconstitution of SARS-Coronavirus MRNA Cap Methylation. PLOS Pathog. 2010;6(4):1–13.
  • Züst R, Cervantes-Barragan L, Habjan M, et al. 2′-O-Methylation Provides a Molecular Signature for the Distinction of Self and Non-Self MRNA Dependent on the RNA Sensor Mda5. Nat Immunol. 2011;12(2):137–143.
  • PETTERSSON RF, SÖDERLUND H, KÁÁRIÁINEN L. The Nucleotide Sequences of the 5′-Terminal T1 Oligonucleotides of Semliki-Forest-Virus 42-S and 26-S RNAs Are Different. Eur J Biochem. 1980;105(3):435–443.
  • Hefti E, Bishop DHL, Dubin DT, et al. 5ʹ Nucleotide Sequence of Sindbis Viral RNA. J Virol. 1976;17(1):149–159.
  • Hyde JL, Gardner CL, Kimura T, et al. RNA Structural Element Alters Host Recognition of Nonself RNA. Science. 2014;343(6172):783–787.
  • Reguera J, Gerlach P, Rosenthal M, et al. Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLOS Pathog. 2016;12(6):1–24.
  • Dias A, Bouvier D, Crépin T, et al. The Cap-Snatching Endonuclease of Influenza Virus Polymerase Resides in the PA Subunit. Nature. 2009;458(7240):914–918.
  • De Vlugt C, Sikora D, Pelchat M. Insight into Influenza: A Virus Cap-Snatching. Viruses. 2018;10(11):641.
  • Trixl L, Lusser A. The Dynamic RNA Modification 5-Methylcytosine and Its Emerging Role as an Epitranscriptomic Mark. WIREs RNA. 2019;10(1):e1510.
  • Schwartz S, Bernstein DA, Mumbach MR, et al. Reveals Widespread Dynamic-Regulated Pseudouridylation of NcRNA and MRNA. Cell. 2014;159(1):148–162.
  • Gokhale NS, Horner SM, Modifications RNA. Go Viral. PLOS Pathog. 2017;13(3):1–6.
  • Gonzales-van Horn SR, Sarnow P. Making the Mark: the Role of Adenosine Modifications in the Life Cycle of RNA Viruses. Cell Host Microbe. 2017;21(6):661–669.
  • Shi H, Wei J, Where HC. When, and How: context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Mol Cell. 2019;74(4):640–650.
  • Jia G, Fu Y, Zhao X, et al. N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nat Chem Biol. 2011;7(12):885–887.
  • Zheng G, Dahl JA, Niu Y, et al. ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. Mol Cell. 2013;49(1):18–29.
  • Shi H, Wang X, Lu Z, et al. YTHDF3 Facilitates Translation and Decay of N6-Methyladenosine-Modified RNA. Cell Res. 2017;27(3):315–328.
  • Gokhale NS, McIntyre ABR, McFadden MJ, et al. N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host Microbe. 2016;20(5):654–665.
  • Hao H, Hao S, Chen H, et al. N6-Methyladenosine Modification and METTL3 Modulate Enterovirus 71 Replication. Nucleic Acids Res. 2018;47(1):362–374.
  • Lichinchi G, Zhao BS, Wu Y, et al. Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host Microbe. 2016;20(5):666–673.
  • Kennedy EM, Courtney DG, Tsai K, et al. Viral Epitranscriptomics. J Virol. 2017;91(9). DOI:10.1128/JVI.02263-16.
  • COHN WE, VOLKIN E. Nucleoside-5′-Phosphates from Ribonucleic Acid. Nature. 1951;167(4247):483–484.
  • Cohn WE. 5-Ribosyl Uracil, a Carbon-Carbon Ribofuranosyl Nucleoside in Ribonucleic Acids. Biochim Biophys Acta. 1959;32:569–571.
  • Marceau CD, Puschnik AS, Majzoub K, et al. Genetic Dissection of Flaviviridae Host Factors through Genome-Scale CRISPR Screens. Nature. 2016;535(7610):159–163.
  • Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of Pseudouridine Into MRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability. Mol Ther. 2008;16(11):1833–1840.
  • Aspden JL, Jackson RJ. Differential Effects of Nucleotide Analogs on Scanning-Dependent Initiation and Elongation of Mammalian MRNA Translation in Vitro. RNA. 2010;16(6):1130–1137.
  • Xing J, Yi J, Cai X, et al. NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation. Mol Cell Biol. 2015;35(23):4043–4052.
  • Yang X, Yang Y, Sun B-F, et al. 5-Methylcytosine Promotes MRNA Export — NSUN2 as the Methyltransferase and ALYREF as an M5C Reader. Cell Res. 2017;27(5):606–625.
  • Tang H, Fan X, Xing J, et al. NSun2 Delays Replicative Senescence by Repressing P27 (KIP1) Translation and Elevating CDK1 Translation. Aging (Albany NY). 2015;7(12):1143–1155.
  • Hoernes TP, Clementi N, Faserl K, et al. Nucleotide Modifications within Bacterial Messenger RNAs Regulate Their Translation and Are Able to Rewire the Genetic Code. Nucleic Acids Res. 2016;44(2):852–862.
  • Bujnicki JM, Feder M, Ayres CL, et al. Sequence-Structure-Function Studies of TRNA:M5C Methyltransferase Trm4p and Its Relationship to DNA:M5C and RNA:M5U Methyltransferases. Nucleic Acids Res. 2004;32(8):2453–2463.
  • Motorin Y, Lyko F, Helm M. 5-Methylcytosine in RNA: detection, Enzymatic Formation and Biological Functions. Nucleic Acids Res. 2010;38(5):1415–1430.
  • McIntyre W, Netzband R, Bonenfant G, et al. Positive-Sense RNA Viruses Reveal the Complexity and Dynamics of the Cellular and Viral Epitranscriptomes during Infection. Nucleic Acids Res. 2018;46(11):5776–5791.
  • Courtney DG, Chalem A, Bogerd HP, et al. Extensive Epitranscriptomic Methylation of A and C Residues on Murine Leukemia Virus Transcripts Enhances Viral Gene Expression. mBio. 2019;10(3). DOI:10.1128/mBio.01209-19.
  • Dong H, Chang DC, Hua MHC, et al. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase. PLOS Pathog. 2012;8(4):1–12.
  • Petes C, Odoardi N, Gee K. The Toll for Trafficking: toll-Like Receptor 7 Delivery to the Endosome. Front Immunol. 2017;8:1075.
  • Cruz-Oliveira C, Freire JM, Conceição TM, et al. Receptors and Routes of Dengue Virus Entry into the Host Cells. FEMS Microbiol Rev. 2015;39(2):155–170.
  • Samuel CE. Adenosine Deaminases Acting on RNA (ADARs) Are Both Antiviral and Proviral. Virology. 2011;411(2):180–193.
  • Martínez I, Melero JAA. Model for the Generation of Multiple A to G Transitions in the Human Respiratory Syncytial Virus Genome: predicted RNA Secondary Structures as Substrates for Adenosine Deaminases That Act on RNA. J Gen Virol. 2002;83:1445–1455.
  • Rima BK, Gatherer D, Young DF, et al. Stability of the Parainfluenza Virus 5 Genome Revealed by Deep Sequencing of Strains Isolated from Different Hosts and Following Passage in Cell Culture. J Virol. 2014;88(7):3826–3836.
  • Taylor DR, Puig M, Darnell MER, et al. New Antiviral Pathway That Mediates Hepatitis C Virus Replicon Interferon Sensitivity through ADAR1. J Virol. 2005;79(10):6291–6298.
  • Mannion NM, Greenwood SM, Young R, et al. Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA. Cell Rep. 2014;9(4):1482–1494.
  • Liddicoat BJ, Piskol R, Chalk AM, et al. RNA Editing by ADAR1 Prevents MDA5 Sensing of Endogenous DsRNA as Nonself. Science. 2015;349(6252):1115–1120.
  • Pfaller CK, Donohue RC, Nersisyan S, et al. Extensive Editing of Cellular and Viral Double-Stranded RNA Structures Accounts for Innate Immunity Suppression and the Proviral Activity of ADAR1p150. PLOS Biol. 2018;16(11):1–36.
  • Deng X, Hackbart M, Mettelman RC, et al. Coronavirus Nonstructural Protein 15 Mediates Evasion of DsRNA Sensors and Limits Apoptosis in Macrophages. Proc Natl Acad Sci. 2017;114(21):E4251–E4260.
  • Hackbart M, Deng X, Baker SC. Coronavirus Endoribonuclease Targets Viral Polyuridine Sequences to Evade Activating Host Sensors. Proc Natl Acad Sci. 2020;117(14):8094–8103.
  • Jagger BW, Wise HM, Kash JC, et al. An Overlapping Protein-Coding Region in Influenza A Virus Segment 3 Modulates the Host Response. Science. 2012;337(6091):199–204.
  • Gaucherand L, Porter BK, Levene RE, et al. The Influenza A Virus Endoribonuclease PA-X Usurps Host MRNA Processing Machinery to Limit Host Gene Expression. Cell Rep. 2019;27(3):776–792.
  • Hayashi T, MacDonald LA, Takimoto T. Influenza A Virus Protein PA-X Contributes to Viral Growth and Suppression of the Host Antiviral and Immune Responses. J Virol. 2015;89(12):6442–6452.
  • Hayashi T, Chaimayo C, McGuinness J, et al. Critical Role of the PA-X C-Terminal Domain of Influenza A Virus in Its Subcellular Localization and Shutoff Activity. J Virol. 2016;90(16):7131–7141.
  • Khaperskyy DA, Schmaling S, Larkins-Ford J, et al. Selective Degradation of Host RNA Polymerase II Transcripts by Influenza A Virus PA-X Host Shutoff Protein. PLOS Pathog. 2016;12(2):1–25.
  • Tanaka T, Kamitani W, DeDiego ML, et al. Severe Acute Respiratory Syndrome Coronavirus Nsp1 Facilitates Efficient Propagation in Cells through a Specific Translational Shutoff of Host MRNA. J Virol. 2012;86(20):11128–11137.
  • Lokugamage KG, Narayanan K, Huang C, et al. Severe Acute Respiratory Syndrome Coronavirus Protein Nsp1 Is a Novel Eukaryotic Translation Inhibitor That Represses Multiple Steps of Translation Initiation. J Virol. 2012;86(24):13598–13608.
  • Kamitani W, Huang C, Narayanan K, et al. Strategy to Suppress Host Protein Synthesis by SARS Coronavirus Nsp1 Protein. Nat Struct Mol Biol. 2009;16(11):1134–1140.
  • Lokugamage KG, Narayanan K, Nakagawa K, et al. Middle East Respiratory Syndrome Coronavirus Nsp1 Inhibits Host Gene Expression by Selectively Targeting MRNAs Transcribed in the Nucleus While Sparing MRNAs of Cytoplasmic Origin. J Virol. 2015;89(21):10970–10981.
  • Foeger N, Schmid EM, Human Rhinovirus ST. 2 2A pro Recognition of Eukaryotic Initiation Factor 4GI: INVOLVEMENT OF AN EXOSITE. J Biol Chem. 2003;278(35):33200–33207.
  • Etchison D, Ederys I, Sonenberggl N (1982) Inhibition of HeLa Cell ProteinSynthesis Following Poliovirus Infection Correlates with the Proteolysis of a 220,000-Dalton Polypeptide Associated with Eucaryotic Initiation Facto3rand a Cap Binding Protein Complex. 5.
  • Song -Q-Q, Lu M-Z, Song J, et al. Coxsackievirus B3 2A Protease Promotes Encephalomyocarditis Virus Replication. Virus Res. 2015;208:22–29.
  • Martínez-Salas E, Ryan MD. Translation and Protein Processing. In: The Picornaviruses. American Society of Microbiology Press, Washington DC, 2010. 140–161.
  • Aumayr M, Schrempf A, Üzülmez Ö, et al. Interaction of 2A Proteinase of Human Rhinovirus Genetic Group A with EIF4E Is Required for EIF4G Cleavage during Infection. Virology. 2017;511:123–134.
  • Bruce SR, Atkins CL, Colasurdo GN, et al. Respiratory Syncytial Virus Infection Alters Surfactant Protein A Expression in Human Pulmonary Epithelial Cells by Reducing Translation Efficiency. Am J Physiol-Lung Cell Mol Physiol. 2009;297(4):L559–L567.
  • Spann KM, Tran KC, Collins PL. Effects of Nonstructural Proteins NS1 and NS2 of Human Respiratory Syncytial Virus on Interferon Regulatory Factor 3, NF-␬B, and Proinflammatory Cytokines. J Virol. 2005;79:10.
  • Lifland AW, Jung J, Alonas E, et al. Human Respiratory Syncytial Virus Nucleoprotein and Inclusion Bodies Antagonize the Innate Immune Response Mediated by MDA5 and MAVS. J Virol. 2012;86(15):8245–8258.
  • Ling Z, Tran KC, Teng MN. Human Respiratory Syncytial Virus Nonstructural Protein NS2 Antagonizes the Activation of Beta Interferon Transcription by Interacting with RIG-I. J Virol. 2009;83(8):3734–3742.
  • Ribaudo M, Barik S. The Nonstructural Proteins of Pneumoviruses Are Remarkably Distinct in Substrate Diversity and Specificity. Virol J. 2017;14(1):215.
  • Dhar J, Cuevas RA, Goswami R, et al. 2ʹ-5ʹ-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1. J Virol. 2015;89(19):10115–10119.
  • Goswami R, Majumdar T, Dhar J, et al. Viral Degradasome Hijacks Mitochondria to Suppress Innate Immunity. Cell Res. 2013;23(8):1025–1042.
  • Lindquist ME, Lifland AW, Utley TJ, et al. Respiratory Syncytial Virus Induces Host RNA Stress Granules to Facilitate Viral Replication. J Virol. 2010;84(23):12274–12284.
  • Lindquist ME, Mainou BA, Dermody TS, et al. Activation of Protein Kinase R Is Required for Induction of Stress Granules by Respiratory Syncytial Virus but Dispensable for Viral Replication. Virology. 2011;413(1):103–110.
  • Moon SL, Barnhart MD, Inhibition WJ. Avoidance of MRNA Degradation by RNA Viruses. Curr Opin Microbiol. 2012;15(4):500–505.
  • Dickson AM, Wilusz J. Strategies for Viral RNA Stability: live Long and Prosper. Trends Genet. 2011;27(7):286–293.
  • Abernathy E, Glaunsinger B. Emerging Roles for RNA Degradation in Viral Replication and Antiviral Defense. Virology. 2015;479–480:600–608.
  • Burgess HM, Cellular MI. 5′-3′ MRNA Exonuclease Xrn1 Controls Double-Stranded RNA Accumulation and Anti-Viral Responses. Cell Host Microbe. 2015;17(3):332–344.
  • Bhowmick R, Mukherjee A, Patra U, et al. Cytoplasmic P Bodies during Infection. Virus Res. 2015;210:344–354.
  • Dougherty JD, White JP, Lloyd RE. Poliovirus-Mediated Disruption of Cytoplasmic Processing Bodies. J Virol. 2011;85(1):64–75.
  • Silva PAGC, Pereira CF, Dalebout TJ, et al. An RNA Pseudoknot Is Required for Production of Yellow Fever Virus Subgenomic RNA by the Host Nuclease XRN1. J Virol. 2010;84(21):11395–11406.
  • Chapman EG, Costantino DA, Rabe JL, et al. The Structural Basis of Pathogenic Subgenomic Flavivirus RNA (SfRNA) Production. Science. 2014;344(6181):307–310.
  • Pijlman GP, Funk A, Kondratieva N, et al. A Highly Structured, Nuclease-Resistant, Noncoding RNA Produced by Flaviviruses Is Required for Pathogenicity. Cell Host Microbe. 2008;4(6):579–591.
  • Michalski D, Ontiveros JG, Russo J, et al. Zika Virus Noncoding SfRNAs Sequester Multiple Host-Derived RNA-Binding Proteins and Modulate MRNA Decay and Splicing during Infection. J Biol Chem. 2019;294(44):16282–16296.
  • Moon SL, Anderson JR, Kumagai Y, et al. RNA Produced by Arthropod-Borne Flaviviruses Inhibits the Cellular Exoribonuclease XRN1 and Alters Host MRNA Stability. RNA. 2012;18(11):2029–2040.
  • Moon SL, Blackinton JG, Anderson JR, et al. XRN1 Stalling in the 5ʹ UTR of Hepatitis C Virus and Bovine Viral Diarrhea Virus Is Associated with Dysregulated Host MRNA Stability. PLOS Pathog. 2015;11(3):1–21.
  • Ng CS, Kasumba DM, Fujita T, et al. Characterization of the Antiviral Activity of the XRN1-DCP1/2 Aggregation against Cytoplasmic RNA Viruses to Prevent Cell Death. Cell Death Differ. 2020. DOI:10.1038/s41418-020-0509-0.
  • Schmid M, Jensen T.The Nuclear RNA Exosome and Its Cofactors. In: Advances in experimental medicine and biology. Vol. 1203; 2019. p. 113–132.
  • Lebreton A, Tomecki R, Dziembowski A, et al. RNA Cleavage by a Eukaryotic Exosome. Nature. 2008;456(7224):993–996.
  • Tomecki R, Kristiansen MS, Lykke-Andersen S, et al. The Human Core Exosome Interacts with Differentially Localized Processive RNases: HDIS3 and HDIS3L. Embo J. 2010;29(14):2342–2357.
  • Staals RHJ, Bronkhorst AW, Schilders G, et al. Dis3-like 1: A Novel Exoribonuclease Associated with the Human Exosome. Embo J. 2010;29(14):2358–2367.
  • Toh-E A, Guerry P, Wickner RB. Chromosomal Superkiller Mutants of Saccharomyces Cerevisiae. J Bacteriol. 1978;136(3):1002–1007.
  • Ridley SP, Sommer SS, Wickner RB. Superkiller Mutations in Saccharomyces Cerevisiae Suppress Exclusion of M2 Double-Stranded RNA by L-A-HN and Confer Cold Sensitivity in the Presence of M and L-A-HN. Mol Cell Biol. 1984;4(4):761–770.
  • Orban TI, Izaurralde E. Decay of MRNAs Targeted by RISC Requires XRN1, the Ski Complex, and the Exosome. Rna N Y N. 2005;11(4):459–469.
  • Zhu B, Mandal SS, Pham A-D, et al. The Human PAF Complex Coordinates Transcription with Events Downstream of RNA Synthesis. Genes Dev. 2005;19(14):1668–1673.
  • Eckard SC, Rice GI, Fabre A, et al. The SKIV2L RNA Exosome Limits Activation of the RIG-I-like Receptors. Nat Immunol. 2014;15(9):839–845.
  • Molleston JM, Sabin LR, Moy RH, et al. A Conserved Virus-Induced Cytoplasmic TRAMP-like Complex Recruits the Exosome to Target Viral RNA for Degradation. Genes Dev. 2016;30(14):1658–1670.
  • Onomoto K, Yoneyama M, Fung G, et al. Antiviral Innate Immunity and Stress Granule Responses. Trends Immunol. 2014;35(9):420–428.
  • Onomoto K, Jogi M, Yoo J-S, et al. Critical Role of an Antiviral Stress Granule Containing RIG-I and PKR in Viral Detection and Innate Immunity. PLoS ONE. 2012;7(8):e43031.
  • Reineke LC, Kedersha N, Langereis MA, et al. Stress Granules Regulate Double-Stranded RNA-Dependent Protein Kinase Activation through a Complex Containing G3BP1 and Caprin1. mBio. 2015;6(2). DOI:10.1128/mBio.02486-14.
  • Nover L, Scharf KD, Neumann D. Cytoplasmic Heat Shock Granules Are Formed from Precursor Particles and Are Associated with a Specific Set of MRNAs. Mol Cell Biol. 1989;9(3):1298–1308.
  • Williams BRG. Signal Integration via PKR. Sci Signal. 2001;2001(89):re2.
  • Hu S, Sun H, Yin L, et al. Dependent Cytosolic CGAS Foci Are Necessary for Intracellular DNA Sensing. Sci Signal. 2019;12:609.
  • Gongora C, David G, Pintard L, et al. Molecular Cloning of a New Interferon-Induced PML Nuclear Body-Associated Protein. J Biol Chem. 1997;272(31):19457–19463.
  • Espert L, Degols G, Gongora C, et al. ISG20, a New Interferon-Induced RNase Specific for Single-Stranded RNA, Defines an Alternative Antiviral Pathway against RNA Genomic Viruses. J Biol Chem. 2003;278(18):16151–16158.
  • Jiang D, Weidner JM, Qing M, et al. Identification of Five Interferon-Induced Cellular Proteins That Inhibit West Nile Virus and Dengue Virus Infections. J Virol. 2010;84(16):8332–8341.
  • Jiang D, Guo H, Xu C, et al. Identification of Three Interferon-Inducible Cellular Enzymes That Inhibit the Replication of Hepatitis C Virus. J Virol. 2008;82(4):1665–1678.
  • Zhou Z, Wang N, Woodson SE, et al. Antiviral Activities of ISG20 in Positive-Strand RNA Virus Infections. Virology. 2011;409(2):175–188.
  • Zhang Y, Burke CW, Ryman KD, et al. Identification and Characterization of Interferon-Induced Proteins That Inhibit Alphavirus Replication. J Virol. 2007;81(20):11246–11255.
  • Qu H, Li J, Yang L, et al. Influenza A Virus-Induced Expression of ISG20 Inhibits Viral Replication by Interacting with Nucleoprotein. Virus Genes. 2016;52(6):759–767.
  • Espert L, Degols G, Lin Y-L, et al. ISG20 Exhibits an Antiviral Activity against Human Immunodeficiency Virus Type 1. J Gen Virol. 2005;86:2221–2229.
  • Nguyen LH, Espert L, Mechti N, et al. The Human Interferon- and Estrogen-Regulated ISG20/HEM45 Gene Product Degrades Single-Stranded RNA and DNA in Vitro. Biochemistry. 2001;40(24):7174–7179.
  • Weiss CM, Trobaugh DW, Sun C, et al. The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. mSphere. 2018;3(5):e00209–18.
  • Wu N, Nguyen X-N, Wang L, et al. The Interferon Stimulated Gene 20 Protein (ISG20) Is an Innate Defense Antiviral Factor That Discriminates Self versus Non-Self Translation. PLOS Pathog. 2019;15(10):1–27.
  • Liu C-H, Zhou L, Chen G, et al. Battle between Influenza A Virus and a Newly Identified Antiviral Activity of the PARP-Containing ZAPL Protein. Proc Natl Acad Sci. 2015;112(45):14048–14053.
  • Tang Q, Wang X, Gao G. The Short Form of the Zinc Finger Antiviral Protein Inhibits Influenza A Virus Protein Expression and Is Antagonized by the Virus-Encoded NS1. J Virol. 2017;91(2). DOI:10.1128/JVI.01909-16.
  • Chiu H-P, Chiu H, Yang C-F, et al. Inhibition of Japanese Encephalitis Virus Infection by the Host Zinc-Finger Antiviral Protein. PLoS Pathog. 2018;14(7):e1007166–e1007166.
  • Takata MA, Gonçalves-Carneiro D, Zang TM, et al. Enables Antiviral Defence Targeting Non-Self RNA. Nature. 2017;550(7674):124–127.
  • Bick MJ, Carroll J-WN, Gao G, et al. Expression of the Zinc-Finger Antiviral Protein Inhibits Alphavirus Replication. J Virol. 2003;77(21):11555–11562.
  • Gao G, Guo X, Goff SP. Inhibition of Retroviral RNA Production by ZAP, a CCCH-Type Zinc Finger Protein. Science. 2002;297(5587):1703–1706.
  • Odon V, Fros JJ, Goonawardane N, et al. The Role of ZAP and OAS3/RNAseL Pathways in the Attenuation of an RNA Virus with Elevated Frequencies of CpG and UpA Dinucleotides. Nucleic Acids Res. 2019;47(15):8061–8083.
  • Atkinson NJ, Witteveldt J, Evans DJ, et al. The Influence of CpG and UpA Dinucleotide Frequencies on RNA Virus Replication and Characterization of the Innate Cellular Pathways Underlying Virus Attenuation and Enhanced Replication. Nucleic Acids Res. 2014;42(7):4527–4545.
  • Guo X, Ma J, Sun J, et al. Antiviral Protein Recruits the RNA Processing Exosome to Degrade the Target MRNA. Proc Natl Acad Sci. 2007;104(1):151–156.
  • Zhu Y, Chen G, Lv F, et al. Zinc-Finger Antiviral Protein Inhibits HIV-1 Infection by Selectively Targeting Multiply Spliced Viral MRNAs for Degradation. Proc Natl Acad Sci U S A. 2011;108(38):15834–15839.
  • Zhu Y, Wang X, Goff SP, et al. Translational Repression Precedes and Is Required for ZAP-Mediated MRNA Decay. Embo J. 2012;31(21):4236–4246.
  • Li M-L, Weng K-F, Shih S-R, et al. The Evolving World of Small RNAs from RNA Viruses: the Evolving World of Small RNAs from RNA Viruses. Wiley Interdiscip Rev RNA. 2016;7(5):575–588.
  • Parameswaran P, Sklan E, Wilkins C, et al. Six RNA Viruses and Forty-One Hosts: viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems. PLoS Pathog. 2010;6(2):e1000764.
  • Scott JC, Brackney DE, Campbell CL, et al. Comparison of Dengue Virus Type 2-Specific Small RNAs from RNA Interference-Competent and –Incompetent Mosquito Cells. PLoS Negl Trop Dis. 2010;4(10):e848.
  • Tam OH, Aravin AA, Stein P, et al. Pseudogene-Derived Small Interfering RNAs Regulate Gene Expression in Mouse Oocytes. Nature. 2008;453(7194):534–538.
  • Babiarz JE, Ruby JG, Wang Y, et al. Mouse ES Cells Express Endogenous ShRNAs, SiRNAs, and Other Microprocessor-Independent, Dicer-Dependent Small RNAs. Genes Dev. 2008;22(20):2773–2785.
  • Watanabe T, Totoki Y, Toyoda A, et al. Endogenous SiRNAs from Naturally Formed DsRNAs Regulate Transcripts in Mouse Oocytes. Nature. 2008;453(7194):539–543.
  • Flemr M, Malik R, Franke V, et al. Isoform Directs Endogenous Small Interfering RNA Production in Mouse Oocytes. Cell. 2013;155(4):807–816.
  • Kennedy EM, Whisnant AW, Kornepati AVR, et al. Production of Functional Small Interfering RNAs by an Amino-Terminal Deletion Mutant of Human Dicer. Proc Natl Acad Sci. 2015;112(50):E6945–E6954.
  • Maillard PV, Ciaudo C, Marchais A, et al. Antiviral RNA Interference in Mammalian Cells. Science. 2013;342(6155):235–238.
  • Li Y, Lu J, Han Y, et al. Functions as an Antiviral Immunity Mechanism in Mammals. Science. 2013;342(6155):231–234.
  • Maillard PV, Van der Veen AG, Deddouche‐Grass S, et al. Inactivation of the Type I Interferon Pathway Reveals Long Double‐stranded RNA ‐mediated RNA Interference in Mammalian Cells. Embo J. 2016;35(23):2505–2518.
  • Veen AG, Maillard PV, Schmidt JM, et al. The RIG‐I‐like Receptor LGP2 Inhibits Dicer‐dependent Processing of Long Double‐stranded RNA and Blocks RNA Interference in Mammalian Cells. Embo J. 2018;37(4). DOI:10.15252/embj.201797479.
  • Qiu Y, Xu Y-P, Wang M, et al. Flavivirus Induces and Antagonizes Antiviral RNA Interference in Both Mammals and Mosquitoes. Sci Adv. 2020;6(6):eaax7989.