1,120
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Deciphering nucleotide modification-induced structure and stability changes

ORCID Icon &
Pages 1920-1930 | Received 15 Aug 2020, Accepted 21 Jan 2021, Published online: 15 Feb 2021

References

  • Harcourt EM, Kietrys AM, Kool ET. Chemical and structural effects of base modifications in messenger RNA. Nature. 2017;541:339–346.
  • Carell T, Brandmayr C, Hienzsch A, et al. Structure and Function of Noncanonical Nucleobases. Chem Int Ed. 2012;51:7110–7131.
  • Helm M, Brule H, Degoul F, et al. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res. 1998;26:1636–1643.
  • Helm M, Motorin Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet. 2017;18:275–291.
  • Agris PF. The importance of being modified: an unrealized code to RNA structure and function. RNA. 2015;21:552–554.
  • Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med. 2014;20:306–314.
  • Lichinchi G, Gao S, Saletore Y, et al. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol. 2016;1:16011.
  • Gomez A, Toor N. Selecting New RNA Crystal Contacts. Structure. 2018;26(9):1166–1167.
  • Vare VY, Eruysal ER, Narendran A, et al. Chemical and conformational diversity of modified nucleosides affects tRNA structure and function. Biomolecules. 2017;7:29.
  • Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2016;18:31–42.
  • Cheng TL, Wang Z, Liao Q, et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell. 2014;28:547–560.
  • Edupuganti RR, Geiger S, Lindeboom RGH, et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 2017;24:870–878.
  • Rowles J, Wong M, Powers R, et al. FTO, RNA epigenetics and epilepsy. Epigenetics. 2012;7(10):1094–1097.
  • Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med. 2012;18:1087–1094.
  • Liu J, Eckert MA, Harada BT, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Bio. 2018;20:1074–1083.
  • Ma J-Z, Yang F, Zhou -C-C, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65(2):529–543.
  • Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254–2270.
  • Wu L, Wu D, Ning J, et al. High Oct4 expression: implications in the pathogenesis of neuroblastic tumours. BMC Cancer. 2019;19:1–12.
  • Ianniello Z, Paiardini A, Fatica A. N6-methyladenosine (m6A): a promising new molecular target in acute myeloid Leukemia. Front Oncol. 2019;9:251.
  • Willmann L, Erbes T, Halbach S, et al. Exometabolom analysis of breast cancer cell lines: metabolic signature. Sci Rep. 2015;5:13374.
  • Yu YP, Ding Y, Chen Z, et al. Novel fusion transcripts associate with progressive prostate cancer. Am J Pathol. 2014;184:2840–2849.
  • Andronescu M, Condon A, Turner DH, et al. In: Gorodkin J, Ruzzo WL, editors. RNA Seq. Struct. Funct. Comput. Bioinformatic Methods, Methods Mol. Biol. Vol. 1097. New York: Humana Press; 2014. p. 45–70. Chapter 3.
  • Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010;11:129.
  • Lorenz R, Bernhart SH, Honer Zu Siederdissen C, et al. ViennaRNA package 2.0. Algorithms Mol Biol. 2011;6. DOI:10.1186/1748-7188-6-26.
  • Tanzer A, Hofacker IL, Lorenz R. RNA modifications in structure prediction – status quo and future challenges. Methods. 2019;156:32–39.
  • Vendeix FA, Munoz AM, Agris PF. Free energy calculation of modified base-pair formation in explicit solvent: A predictive model. RNA. 2009;15:2278–2287.
  • Chawla M, Oliva R, Bujnicki JM, et al. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res. 2015;43:6714–6729.
  • Aduri R, Psciuk BT, Saro P, et al. AMBER Force Field Parameters for the Naturally Occurring Modified Nucleosides in RNA. J Chem Theory Comput. 2007;3:1464–1475.
  • Sakuraba S, Asai K, Kameda T. Predicting RNA duplex dimerization free-energy changes upon mutations using molecular dynamics simulations. J Phys Chem Lett. 2015;6:4348–4351.
  • Nishida S, Sakuraba S, Asai K, et al. Estimating energy parameters for rna secondary structure predictions using both experimental and computational data. IEEE/ACM Trans Comput Biol Bioinforma. 2019;16:1645–1655.
  • Chen X, Kierzek R, Turner DH. Stability and structure of RNA duplexes containing isoguanosine and isocytidine. J Am Chem Soc. 2001;123:1267–1274.
  • Wright DJ, Rice JL, Yanker DM, et al. Nearest neighbor parameters for inosine·uridine pairs in RNA duplexes. Biochemistry. 2007;46:4625–4634.
  • Roost C, Lynch SR, Batista PJ, et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J Am Chem Soc. 2015;137(5):2107–2115.
  • Chou F-C, Kladwang W, Kappel K, et al. Blind tests of RNA nearest-neighbor energy prediction. Proc Natl Acad Sci U S A. 2016;113:8430–8435.
  • Wright DJ, Force CR, Znosko BM. Stability of RNA duplexes containing inosine·cytosine pairs. Nucleic Acids Res. 2018;46:12099–12108.
  • Hopfinger MC, Kirkpatrick CC, Znosko BM. Predictions and analyses of RNA nearest neighbor parameters for modified nucleotides. Nucleic Acids Res. 2020;48:8901–8913.
  • Uhlenbeck OC. Tetraloops and RNA folding. Nature. 1990;346:613–614.
  • Varani G. Exceptionally Stable Nucleic Acid Hairpins. Annu Rev Biophys Biomol Struct. 1995;24:379–404.
  • Deng NJ, Cieplak P. Free energy profile of RNA hairpins: a molecular dynamics simulation study. Biophys J. 2010;98:627–636.
  • Seeliger D, de Groot BL. Protein thermostability calculations using alchemical free energy simulations. Biophys J. 2010;98:2309–2316.
  • Procacci P. I. Dissociation free energies of drug–receptor systems via non-equilibrium alchemical simulations: a theoretical framework. Phys Chem Phys. 2016;18:14991–15004.
  • Sponer J, Bussi G, Krepl M, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev. 2018;118:4177–4338.
  • Lee T-S, Allen BK, Giese TJ, et al. Alchemical binding free energy calculations in AMBER20: Advances and best practices for drug discovery. Chem Inf Model. 2020; DOI:10.1021/acs.jcim.0c00613.
  • Li Y, Nam K. Repulsive soft-core potentials for efficient alchemical free energy calculations. J Chem Theory Comput. 2020;16:4776–4789.
  • Tanida Y, Matsuura A. Alchemical free energy calculations via metadynamics: application to the theophylline-RNA aptamer complex. J Comput Chem. 2020;41(20):1804–1819.
  • Mlynsky V, Bussi G. Exploring RNA structure and dynamics through enhanced sampling simulations. Curr Opin Struct Biol. 2018;49:63–71.
  • Cheng X, Cui G, Hornak V, et al. Modified replica exchange simulation methods for local structure refinement. J Phys Chem B. 2005;109:8220–8230.
  • Deng N-J, Cieplak P. Molecular dynamics and free energy study of the conformational equilibria in the UUUU RNA hairpin. J Chem Theory Comput. 2007;3:1435–1450.
  • Villa A, Widjajakusuma E, Stock G. Molecular dynamics simulation of the structure, dynamics, and thermostability of the RNA hairpins uCACGg and cUUCGg. J Phys Chem B. 2008;112:134–142.
  • Garcia AE, Paschek D. Simulation of the pressure and temperature folding/unfolding equilibrium of a small RNA hairpin. J Am Chem Soc. 2008;130:815–817.
  • Zhang Y, Zhao X, Mu Y. Conformational transition map of an RNA GCAA tetraloop explored by replica-exchange molecular dynamics simulation. J Chem Theory Comput. 2009;5:1146–1154.
  • DePaul AJ, Thompson EJ, Patel SS, et al. Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. Nucleic Acids Res. 2010;38:4856–4867.
  • Zuo G, Li W, Zhang J, et al. Folding of a small RNA hairpin based on simulation with replica exchange molecular dynamics. J Phys Chem B. 2010;114:5835–5839.
  • Kuhrova P, Banas P, Best RB, et al. Computer folding of RNA tetraloops? Are we there yet? J Chem Theory Comput. 2013;9:2115–2125.
  • Bottaro S, Gil-Ley A, Bussi G. RNA folding pathways in stop motion. Nucleic Acids Res. 2016;44:5883–5891.
  • Kuhrova P, Best RB, Bottaro S, et al. Computer folding of RNA tetraloops: identification of key force field deficiencies. J Chem Theory Comput. 2016;12:4534–4548.
  • Miner JC, Chen AA, Garcia AE. Free-energy landscape of a hyperstable RNA tetraloop. Proc Natl Acad Sci U S A. 2016;113:6665–6670. .
  • Bottaro S, Bussi G, Kennedy SD, et al. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations. Sci Adv. 2018;4:eaar8521.
  • Cesari A, Bottaro S, Lindorff-Larsen K, et al. Fitting corrections to an RNA force field using experimental data. J Chem Theory Comput. 2019;15:3425–3431.
  • Williams DJ, Hall KB. Experimental and computational studies of the G[UUCG]C RNA tetraloop11Edited by I. Tinoco. J Mol Biol. 2000;297:1045–1061.
  • Hendel A, Bak RO, Clark JT, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;33:985–989.
  • Carregal-Romero S, Fadon L, Berra E, et al. MicroRNA nanotherapeutics for lung targeting. insights into pulmonary hypertension. Int J Mol Sci. 2020;21:3253.
  • Case D, Ben-Shalom IY, Brozell SR, et al. AMBER 2018. San Francisco: University of California; 2018.
  • Macke TJ, Case DA. In: Leontes NB, SantaLucia J Jr., editors. Mol. Model. Nucleic Acids. Washington, DC; 1998. p. 379–393. Chapter 24. DOI: 10.1021/bk-1998-0682.ch024.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera?A visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612.
  • Bhati AP, Wan S, Hu Y, et al. Uncertainty quantification in alchemical free energy methods. Chem Theory Comput. 2018;14:2867–2880.
  • Xu X, Zhao P, Chen S-J. Vfold: A web server for RNA structure and folding thermodynamics prediction. PLoS One. 2014;9:1–7.
  • Steinbrecher T, Mobley DL, Case DA. Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J Chem Phys. 2007;127:214108.
  • Shirts MR, Mobley DL. In: Monticelli L, Salonen E, editors. An introduction to best practices in free energy calculations. Biomol. Simulations Methods Protoc. Totowa, NJ: Humana Press; 2013. p. 271–311. DOI:10.1007/978-1-62703-017-5_11.
  • Klimovich PV, Shirts MR, Mobley DL. Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des. 2015;29:397–411.
  • Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9:3084–3095.
  • Shirts MR, Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys. 2008;129:124105.
  • Mathews DH, Disney MD, Childs JL, et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA. 2004;101:7287–7292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.