1,243
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Universal functions of the σ finger in alternative σ factors during transcription initiation by bacterial RNA polymerase

, , , &
Pages 2028-2037 | Received 08 Dec 2020, Accepted 08 Feb 2021, Published online: 25 Feb 2021

References

  • Chen J, Boyaci H, Campbell EA. Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol. 2021;19:95–109.
  • Feklistov A, Sharon BD, Darst SA, et al. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol. 2014;68:357–376.
  • Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5:1245–1265.
  • Gruber TM, Gross CA. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol. 2003;57:441–466.
  • Chen AI, Goulian M. A network of regulators promotes dehydration tolerance in Escherichia coli. Environ Microbiol. 2018;20:1283–1295.
  • Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol. 2011;65:189–213.
  • Schellhorn HE. Function, evolution, and composition of the RpoS regulon in Escherichia coli. Front Microbiol. 2020;11:560099.
  • Hengge R. Stationary-phase gene regulation in escherichia coli section sign. EcoSal Plus. 2011;4. DOI:10.1128/ecosalplus.5.6.3
  • Grossman AD, Erickson JW, Gross CA. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell. 1984;38:383–390.
  • Yura T. Regulation of the heat shock response in Escherichia coli: history and perspectives. Genes Genet Syst. 2019;94:103–108.
  • Zhao K, Liu M, Burgess RR. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo. J Biol Chem. 2005;280:17758–17768.
  • Arnosti DN, Chamberlin MJ. Secondary sigma factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. Proc Natl Acad Sci U S A. 1989;86:830–834.
  • Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev. 2000;64:694–708.
  • Koo BM, Rhodius VA, Campbell EA, et al. Mutational analysis of Escherichia coli sigma28 and its target promoters reveals recognition of a composite −10 region, comprised of an ‘extended −10ʹ motif and a core −10 element. Mol Microbiol. 2009;72:830–843.
  • Maeda H, Jishage M, Nomura T, et al. Two extracytoplasmic function sigma subunits, sigma(E) and sigma(FecI), of Escherichia coli: promoter selectivity and intracellular levels. J Bacteriol. 2000;182:1181–1184.
  • Helmann JD. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol. 2019;112:335–347.
  • Raivio TL, Silhavy TJ. Periplasmic stress and ECF sigma factors. Annu Rev Microbiol. 2001;55:591–624.
  • Mecsas J, Rouviere PE, Erickson JW, et al. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev. 1993;7:2618–2628.
  • Ades SE. Regulation by destruction: design of the sigmaE envelope stress response. Curr Opin Microbiol. 2008;11:535–540.
  • Angerer A, Enz S, Ochs M, et al. Transcriptional regulation of ferric citrate transport in Escherichia coli K-12. Fecl belongs to a new subfamily of sigma 70-type factors that respond to extracytoplasmic stimuli. Mol Microbiol. 1995;18:163–174.
  • Braun V, Mahren S. Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol Rev. 2005;29:673–684.
  • Danson AE, Jovanovic M, Buck M, et al. Mechanisms of sigma(54)-dependent transcription initiation and regulation. J Mol Biol. 2019;431:3960–3974.
  • Campbell EA, Muzzin O, Chlenov M, et al. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell. 2002;9:527–539.
  • Murakami KS, Masuda S, Campbell EA, et al. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science. 2002;296:1285–1290.
  • Zuo Y, Steitz TA. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Mol Cell. 2015;58:534–540.
  • Feklistov A, Barinova N, Sevostyanova A, et al. A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme. Mol Cell. 2006;23:97–107.
  • Haugen SP, Berkmen MB, Ross W, et al. rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell. 2006;125:1069–1082.
  • Barne KA, Bown JA, Busby SJ, et al. Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the ‘extended-10ʹ motif at promoters. Embo J. 1997;16:4034–4040.
  • Gaal T, Ross W, Estrem ST, et al. Promoter recognition and discrimination by EsigmaS RNA polymerase. Mol Microbiol. 2001;42:939–954.
  • Checroun C, Bordes P, Leroy O, et al. Interactions between the 2.4 and 4.2 regions of sigmaS, the stress-specific sigma factor of Escherichia coli, and the −10 and −35 promoter elements. Nucleic Acids Res. 2004;32:45–53.
  • Koo BM, Rhodius VA, Campbell EA, et al. Dissection of recognition determinants of Escherichia coli sigma32 suggests a composite −10 region with an ‘extended −10ʹ motif and a core −10 element. Mol Microbiol. 2009;72:815–829.
  • Nonaka G, Blankschien M, Herman C, et al. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev. 2006;20:1776–1789.
  • Zhao K, Liu M, Burgess RR. Adaptation in bacterial flagellar and motility systems: from regulon members to ‘foraging’-like behavior in E. coli. Nucleic Acids Res. 2007;35:4441–4452.
  • Liu B, Zuo Y, Steitz TA. Structures of E. coli sigmaS-transcription initiation complexes provide new insights into polymerase mechanism. Proc Natl Acad Sci U S A. 2016;113:4051–4056.
  • Fang C, Li L, Shen L, et al. Structures and mechanism of transcription initiation by bacterial ECF factors. Nucleic Acids Res. 2019;47:7094–7104.
  • Lin W, Mandal S, Degen D, et al. Structural basis of ECF-sigma-factor-dependent transcription initiation. Nat Commun. 2019;10:710.
  • Li L, Fang C, Zhuang N, et al. Structural basis for transcription initiation by bacterial ECF sigma factors. Nat Commun. 2019;10:1153.
  • Shi W, Zhou W, Zhang B, et al. Structural basis of bacterial sigma(28) -mediated transcription reveals roles of the RNA polymerase zinc-binding domain. Embo J. 2020;39:e104389.
  • Murakami KS, Masuda S, Darst SA. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science. 2002;296:1280–1284.
  • Basu RS, Warner BA, Molodtsov V, et al. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme. J Biol Chem. 2014;289:24549–24559.
  • Li L, Molodtsov V, Lin W, et al. RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription. Proc Natl Acad Sci U S A. 2020;117:5801–5809.
  • Kulbachinskiy A, Region MA. 3.2 of the sigma subunit contributes to the binding of the 3ʹ-initiating nucleotide in the RNA polymerase active center and facilitates promoter clearance during initiation. J Biol Chem. 2006;281:18273–18276.
  • Pupov D, Kuzin I, Bass I, et al. Distinct functions of the RNA polymerase sigma subunit region 3.2 in RNA priming and promoter escape. Nucleic Acids Res. 2014;42:4494–4504.
  • Zhang Y, Feng Y, Chatterjee S, et al. Structural basis of transcription initiation. Science. 2012;338:1076–1080.
  • Petushkov I, Esyunina D, Mekler V, et al. Interplay between sigma region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase. Biochem J. 2017;474:4053–4064.
  • Duchi D, Bauer DL, Fernandez L, et al. RNA Polymerase Pausing during Initial Transcription. Mol Cell. 2016;63:939–950.
  • Dulin D, Bauer DLV, Malinen AM, et al. Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria. Nat Commun. 2018;9:1478.
  • Nickels BE, Garrity SJ, Mekler V, et al. The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation. Proc Natl Acad Sci U S A. 2005;102:4488–4493.
  • Gourse RL, Chen AY, Gopalkrishnan S, et al. Transcriptional responses to ppGpp and DksA. Annu Rev Microbiol. 2018;72:163–184.
  • Paul BJ, Barker MM, Ross W, et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell. 2004;118:311–322.
  • Sanchez-Vazquez P, Dewey CN, Kitten N, et al. Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. Proc Natl Acad Sci U S A. 2019;116:8310–8319.
  • Ross W, Vrentas CE, Sanchez-Vazquez P, et al. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell. 2013;50:420–429.
  • Lemke JJ, Sanchez-Vazquez P, Burgos HL, et al. Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc Natl Acad Sci U S A. 2011;108:5712–5717.
  • Perederina A, Svetlov V, Vassylyeva MN, et al. Regulation through the secondary channel–structural framework for ppGpp-DksA synergism during transcription. Cell. 2004;118:297–309.
  • Molodtsov V, Sineva E, Zhang L, et al. Allosteric Effector ppGpp Potentiates the Inhibition of Transcript Initiation by DksA. Mol Cell. 2018;69:828–839.
  • Ross W, Sanchez-Vazquez P, Chen AY, et al. ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol Cell. 2016;62:811–823.
  • Shin Y, Qayyum MZ, Pupov D, et al. Structural basis of ribosomal RNA transcription regulation. Nat Commun. 2021;12:528.
  • Pupov D, Petushkov I, Esyunina D, et al. 3.2 of the sigma factor controls the stability of rRNA promoter complexes and potentiates their repression by DksA. Nucleic Acids Res. 2018;46:11477–11487.
  • Osterberg S, Del Peso-Santos T, Shingler V. Regulation of alternative sigma factor use. Annu Rev Microbiol. 2011;65:37–55.
  • Keseler IM, Mackie A, Santos-Zavaleta A, et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res. 2017;45:D543–D50.
  • Aristarkhov A, Mikulskis A, Belasco JG, et al. Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli. J Bacteriol. 1996;178:4327–4332.
  • Membrillo-Hernandez J, Lin EC. Regulation of expression of the adhE gene, encoding ethanol oxidoreductase in Escherichia coli: transcription from a downstream promoter and regulation by fnr and RpoS. J Bacteriol. 1999;181:7571–7579.
  • Lacour S, Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol. 2004;186:7186–7195.
  • Bishop RE, Leskiw BK, Hodges RS, et al. The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. J Mol Biol. 1998;280:583–596.
  • Petushkov I, Esyunina D, Kulbachinskiy A. sigma38-dependent promoter-proximal pausing by bacterial RNA polymerase. Nucleic Acids Res. 2017;45:3006–3016.
  • Cowing DW, Bardwell JC, Craig EA; Cowing DW, Bardwell JC, Craig EA, Woolford C, Hendrix RW, Gross CA. Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci U S A. 1985;82:2679–2683.
  • Yamada M, Nagamitsu H, Izu H, et al. Characterization of the ves gene, which is expressed at a low temperature in Escherichia coli. J Mol Microbiol Biotechnol. 2002;4:163–169.
  • Rhodius VA, Suh WC, Nonaka G, et al. Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol. 2006;4:e2.
  • Buckstein MH, He J, Rubin H. Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol. 2008;190:718–726.
  • Bird JG, Zhang Y, Tian Y, et al. The mechanism of RNA 5ʹ capping with NAD+, NADH and desphospho-CoA. Nature. 2016;535:444–447.
  • Julius C, Bacterial YY. RNA polymerase caps RNA with various cofactors and cell wall precursors. Nucleic Acids Res. 2017;45:8282–8290.
  • Malygin AG, Shemyakin MF. Adenosine, NAD and FAD can initiate template-dependent RNA synthesis catalyzed by Escherichia coli RNA polymerase. FEBS Lett. 1979;102:51–54.
  • McClure WR, Cech CL. On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem. 1978;253:8949–8956.
  • Julius C, Noncanonical YY. RNA-capping: discovery, mechanism, and physiological role debate. Wiley Interdiscip Rev RNA. 2019;10:e1512.
  • Winkelman JT, Chandrangsu P, Ross W, et al. Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters. Proc Natl Acad Sci U S A. 2016;113:E1787–95.
  • Aberg A, Fernandez-Vazquez J, Cabrer-Panes JD, et al. Similar and divergent effects of ppGpp and DksA deficiencies on transcription in Escherichia coli. J Bacteriol. 2009;191:3226–3236.
  • Girard ME, Gopalkrishnan S, Grace ED, et al. DksA and ppGpp regulate the sigma(S) stress response by activating promoters for the small RNA DsrA and the anti-adapter protein IraP. J Bacteriol. 2018;200. DOI:10.1128/JB.00463-17
  • Paul BJ, Berkmen MB, Gourse RL. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc Natl Acad Sci U S A. 2005;102:7823–7828.
  • Lemke JJ, Durfee T, Gourse RL. DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade. Mol Microbiol. 2009;74:1368–1379.
  • Costanzo A, Ades SE. Growth phase-dependent regulation of the extracytoplasmic stress factor, sigmaE, by guanosine 3ʹ,5ʹ-bispyrophosphate (ppGpp). J Bacteriol. 2006;188:4627–4634.
  • Costanzo A, Nicoloff H, Barchinger SE, et al. ppGpp and DksA likely regulate the activity of the extracytoplasmic stress factor sigmaE in Escherichia coli by both direct and indirect mechanisms. Mol Microbiol. 2008;67:619–632.
  • Grace ED, Gopalkrishnan S, Girard ME, et al. Activation of the sigmaE-dependent stress pathway by conjugative TraR may anticipate conjugational stress. J Bacteriol. 2015;197:924–931.
  • Chen J, Gopalkrishnan S, Chiu C, et al. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. eLife. 2019;8. DOI:10.7554/eLife.49375
  • Staron A, Sofia HJ, Dietrich S, et al. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol. 2009;74:557–581.
  • Glyde R, Ye F, Jovanovic M, et al. Structures of bacterial RNA polymerase complexes reveal the mechanism of DNA loading and transcription initiation. Mol Cell. 2018;70:1111–20 e3.
  • Sainsbury S, Niesser J, Cramer P. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature. 2013;493:437–440.
  • Engel C, Gubbey T, Neyer S, et al. Structural basis of RNA polymerase I transcription initiation. Cell. 2017;169:120–31 e22.
  • Abascal-Palacios G, Ramsay EP, Beuron F, et al. Structural basis of RNA polymerase III transcription initiation. Nature. 2018;553:301–306.
  • Vorlander MK, Khatter H, Wetzel R, et al. Molecular mechanism of promoter opening by RNA polymerase III. Nature. 2018;553:295–300.
  • Boyaci H, Chen J, Lilic M, et al. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. eLife. 2018;7. DOI:10.7554/eLife.34823
  • Artsimovitch I, Vassylyeva MN, Svetlov D, et al. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell. 2005;122:351–363.
  • Molodtsov V, Nawarathne IN, Scharf NT, et al. X-ray crystal structures of the escherichia coli RNA polymerase in complex with benzoxazinorifamycins. J Med Chem. 2013;56:4758–4763.
  • Lin W, Das K, Degen D, et al. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Mol Cell. 2018;70:60–71 e15.
  • Morichaud Z, Chaloin L, Regions BK. 1.2 and 3.2 of the RNA polymerase sigma subunit promote DNA melting and attenuate action of the antibiotic lipiarmycin. J Mol Biol. 2016;428:463–476.
  • Shikalov AB, Esyunina DM, Pupov DV, et al. The sigma(24) subunit of escherichia coli RNA polymerase can induce transcriptional pausing in vitro. Biochemistry (Mosc). 2019;84:426–434.
  • Svetlov V, Artsimovitch I. Purification of bacterial RNA polymerase: tools and protocols. Methods Mol Biol. 2015;1276:13–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.