3,174
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

A novel fluorescent reporter sensitive to serine mis-incorporation

, , , , , ORCID Icon & show all
Pages 220-232 | Received 04 Jun 2021, Accepted 02 Dec 2021, Published online: 15 Feb 2022

References

  • Lant JT, Berg MD, Heinemann IU, et al. Pathways to disease from natural variations in human cytoplasmic tRNAs. J Biol Chem. 2019;294:5294–5308.
  • Mohler K, Ibba M. Translational fidelity and mistranslation in the cellular response to stress. Nat Microbiol. 2017;2:17117.
  • Reynolds NM, Lazazzera BA, Ibba M. Cellular mechanisms that control mistranslation. Nat Rev Microbiol. 2010;8:849–856.
  • Crick FH. The origin of the genetic code. J Mol Biol. 1968;38:367–379.
  • Brody S, Yanofsky C. Suppressor gene alteration of protein primary structure. Proc Natl Acad Sci U S A. 1963;50:9–16.
  • Söll D, Ohtsuka E, Jones DS, et al. Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA’s to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids. Proc Natl Acad Sci U S A. 1965;54:1378–1385.
  • Nirenberg M, Leder P, Bernfield M, et al. RNA codewords and protein synthesis, VII. On the general nature of the RNA code. Proc Natl Acad Sci U S A. 1965;53:1161–1168.
  • Carbon J, Curry JB. Genetically and chemically derived missense suppressor transfer RNA’s with altered enzymic aminoacylation rates. J Mol Biol. 1968;38:201–216.
  • Carbon J, Berg P, Yanofsky C. Studies of missense suppression of the tryptophan synthetase A-protein mutant A36. Proc Natl Acad Sci U S A. 1966;56:764–771.
  • Roberts JW, Carbon J. Nucleotide sequence studies of normal and genetically altered glycine transfer ribonucleic acids from Escherichia coli. J Biol Chem. 1975;250:5530–5541.
  • Kramer EB, Farabaugh PJ. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA. 2007;13:87–96.
  • Kramer EB, Vallabhaneni H, Mayer LM, et al. A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae. RNA. 2010;16:1797–1808.
  • Drummond DA, Wilke CO. The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet. 2009;10:715–724.
  • Ruan B, Palioura S, Sabina J, et al. Quality control despite mistranslation caused by an ambiguous genetic code. Proc Natl Acad Sci U S A. 2008;105:16502–16507.
  • Hoffman KS, Berg MD, Shilton BH, et al. Genetic selection for mistranslation rescues a defective co-chaperone in yeast. Nucleic Acids Res. 2017;45:3407–3421.
  • Lant JT, Berg MD, Sze DHW, et al. Visualizing tRNA-dependent mistranslation in human cells. RNA Biol. 2018;15:567–575.
  • Han NC, Kelly P, Ibba M. Translational quality control and reprogramming during stress adaptation. Exp Cell Res. 2020;394:112161.
  • Schwartz MH, Pan T. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol. 2017;52:205–219.
  • Fan Y, Wu J, Ung MH, et al. Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Res. 2015;43:1740–1748.
  • Araujo ARD, Melo T, Maciel EA, et al. Errors in protein synthesis increase the level of saturated fatty acids and affect the overall lipid profiles of yeast. PLoS One. 2018;13:e0202402.
  • Moura GR, Carreto LC, Santos MA. Genetic code ambiguity: an unexpected source of proteome innovation and phenotypic diversity. Curr Opin Microbiol. 2009;12:631–637.
  • Lant JT, Kiri R, Duennwald ML, et al. Formation and persistence of polyglutamine aggregates in mistranslating cells. Nucleic Acids Res. 2021;49(20):11883–11899.
  • Lee JW, Beebe K, Nangle LA, et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 2006;443:50–55.
  • LatourP, Thauvin-Robinet C, Baudelet-Mery C, et al. A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet. 2010;86:77–82.
  • Simons C, Griffin LB, Helman G, et al. Loss-of-function alanyl-tRNA synthetase mutations cause an autosomal-recessive early-onset epileptic encephalopathy with persistent myelination defect. Am J Hum Genet. 2015;96:675–681.
  • Lenhard B, Orellana O, Ibba M, et al. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res. 1999;27:721–729.
  • Spratt DE, Barber KR, Marlatt NM, et al. A subset of calcium-binding S100 proteins show preferential heterodimerization. FEBS J. 2019;286:1859–1876.
  • Masson JM, Miller JH. Expression of synthetic suppressor tRNA genes under the control of a synthetic promoter. Gene. 1986;47:179–183.
  • Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008;3:e3647.
  • Zhang J, Xin L, Shan B, et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics. 2012;11:M111 010587.
  • Shu X, Shaner NC, Yarbrough CA, et al. Novel chromophores and buried charges control color in mFruits. Biochemistry. 2006;45:9639–9647.
  • Mandell DJ, Coutsias EA, Kortemme T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods. 2009;6:551–552.
  • Conway P, Tyka MD, DiMaio F, et al. Relaxation of backbone bond geometry improves protein energy landscape modeling. Protein Sci. 2014;23:47–55.
  • Hodges JL. The significance probability of the smirnov two-sample test. Ark Mat. 1958;3:469–486.
  • Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–272.
  • Gomes AC, Miranda I, Silva RM, et al. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol. 2007;8:R206.
  • Simoes J, Bezerra AR, Moura GR, et al. The fungus Candida albicans tolerates ambiguity at multiple codons. Front Microbiol. 2016;7:401.
  • Nangle LA, Motta CM, Schimmel P. Global effects of mistranslation from an editing defect in mammalian cells. Chem Biol. 2006;13:1091–1100.
  • Javid B, Sorrentino F, Toosky M, et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc Natl Acad Sci U S A. 2014;111:1132–1137.
  • Chen H, Ercanbrack C, Wang T, et al. A synthetic reporter for probing mistranslation in living cells. Front Bioeng Biotechnol. 2020;8:623.
  • Mohler K, Aerni HR, Gassaway B, et al. MS-READ: quantitative measurement of amino acid incorporation. Biochim Biophys Acta Gen Subj. 2017;1861:3081–3088.
  • Cvetesic N, Semanjski M, Soufi B, et al. Proteome-wide measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of protein modifications. Sci Rep. 2016;6:28631.
  • Berg MD, Zhu Y, Genereaux J, et al. Modulating Mistranslation Potential of tRNA(Ser) in Saccharomyces cerevisiae. Genetics. 2019;213:849–863.
  • Bullwinkle TJ, Reynolds NM, Raina M, et al. Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code. Elife. 2014;3. DOI:10.7554/eLife.02501
  • Cvetesic N, Perona JJ, Gruic-Sovulj I. Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps. J Biol Chem. 2012;287:25381–25394.
  • Olsen JV, Vermeulen M, Santamaria A, et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010;3:ra3.
  • Grigorenko BL, Krylov AI, Nemukhin AV. Molecular modeling clarifies the mechanism of chromophore maturation in the green fluorescent protein. J Am Chem Soc. 2017;139:10239–10249.