1,592
Views
2
CrossRef citations to date
0
Altmetric
Review

A structural perspective of human RNA polymerase III

ORCID Icon, ORCID Icon & ORCID Icon
Pages 246-255 | Received 29 Sep 2021, Accepted 19 Dec 2021, Published online: 08 Feb 2022

References

  • White RJ. Transcription by RNA polymerase III: more complex than we thought. Nat Rev Genet. 2011;12(7):459–463.
  • Werner F, Grohmann D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol. 2011;9(2):85–98.
  • Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. Biochim Biophys Acta. 2013;1829(3–4):361–375.
  • Waldron C, Lacroute F. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J Bacteriol. 1975;122(3):855–865.
  • Willis IM, Moir RD. Signaling to and from the RNA Polymerase III transcription and processing machinery. Annu Rev Biochem. 2018;87(1):75–100.
  • Lata E, Choquet K, Sagliocco F, et al. RNA Polymerase III subunit mutations in genetic diseases. Front Mol Biosci. 2021;8:696438.
  • White RJ. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet. 2008;24(12):622–629.
  • Yeganeh M, Hernandez N. RNA polymerase III transcription as a disease factor. Genes Dev. 2020;34(13–14):865–882.
  • Schramm L, Hernandez N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 2002;16(20):2593–2620.
  • Vannini A. A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries. Biochim Biophys Acta. 2013;1829(3–4):258–264.
  • Thuillier V, Stettler S, Sentenac A, et al. A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation. EMBO J. 1995;14(2):351–359.
  • Werner M, Hermann-Le Denmat S, Treich I, et al. Effect of mutations in a zinc-binding domain of yeast RNA polymerase C (III) on enzyme function and subunit association. Mol Cell Biol. 1992;12(3):1087–1095.
  • Landrieux E, Alic N, Ducrot C, et al. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J. 2006;25(1):118–128.
  • Kassavetis GA, Prakash P, Shim E. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J Biol Chem. 2010;285(4):2695–2706.
  • Ittmann M, Ali J, Greco A, et al. The gene complementing a temperature-sensitive cell cycle mutant of BHK cells is the human homologue of the yeast RPC53 gene, which encodes a subunit of RNA polymerase C (III). Cell Growth Differ. 1993;4(6):503–511.
  • Wang Z, Roeder RG. TFIIIC1 acts through a downstream region to stabilize TFIIIC2 binding to RNA polymerase III promoters. Mol Cell Biol. 1996;16(12):6841–6850.
  • Wang Z, Roeder RG. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev. 1997;11(10):1315–1326.
  • Chong SS, Hu P, Hernandez N. Reconstitution of transcription from the human U6 small nuclear RNA promoter with eight recombinant polypeptides and a partially purified RNA polymerase III complex. J Biol Chem. 2001;276(23):20727–20734.
  • Hu P, Wu S, Sun Y, et al. Characterization of human RNA Polymerase III identifies orthologues for saccharomyces cerevisiae RNA polymerase III subunits. Mol Cell Biol. 2002;22(22):8044–8055. DOI:10.1128/MCB.22.22.8044-8055.2002.
  • Lefevre S, Dumay-Odelot H, El-Ayoubi L, et al. Structure-function analysis of hRPC62 provides insights into RNA polymerase III transcription initiation. Nat Struct Mol Biol. 2011;18(3):352–358. DOI:10.1038/nsmb.1996.
  • Boissier F, Dumay-Odelot H, Teichmann M, et al. Structural analysis of human RPC32beta-RPC62 complex. J Struct Biol. 2015;192(3):313–319.
  • Gouge J, Guthertz N, Kramm K, et al. Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation. Nat Commun. 2017;8(1):130. DOI:10.1038/s41467-017-00126-1.
  • Li L, Yu Z, and Zhao D, et al. Structure of human RNA polymerase III elongation complex. Cell Res. 2021;31(7): 791–800.
  • Ramsay EP, Abascal-Palacios G, Daiss JL, et al. Structure of human RNA polymerase III. Nat Commun. 2020;11(1):6409. DOI:10.1038/s41467-020-20262-5.
  • Wang Q, Li S, Wan F, et al. Structural insights into transcriptional regulation of human RNA polymerase III. Nat Struct Mol Biol. 2021;28(2):220–227. DOI:10.1038/s41594-021-00557-x.
  • Girbig M, Misiaszek AD, Vorlander MK, et al. Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nat Struct Mol Biol. 2021;28(2):210–219. DOI:10.1038/s41594-020-00555-5.
  • Hoffmann NA, Jakobi AJ, Moreno-Morcillo M, et al. Molecular structures of unbound and transcribing RNA polymerase III. Nature. 2015;528(7581):231–236. DOI:10.1038/nature16143.
  • Bernecky C, Herzog F, Baumeister W, et al. Structure of transcribing mammalian RNA polymerase II. Nature. 2016;529(7587):551–554.
  • Engel C, Sainsbury S, Cheung AC, et al. RNA polymerase I structure and transcription regulation. Nature. 2013;502(7473):650–655.
  • Fernandez-Tornero C, Moreno-Morcillo M, Rashid UJ, et al. Crystal structure of the 14-subunit RNA polymerase I. Nature. 2013;502(7473):644–649. DOI:10.1038/nature12636.
  • Misiaszek AD, Girbig M, Grotsch H, et al. Cryo-EM structures of human RNA polymerase I. BioRxiv. 2021. DOI:10.1101/2021.05.31.446457.
  • Rijal K, Maraia RJ. Active center control of termination by RNA Polymerase III and tRNA gene transcription levels in vivo. PLoS Genet. 2016;12(8):e1006253.
  • Chedin S, Riva M, Schultz P, et al. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev. 1998;12(24):3857–3871.
  • Alic N, Ayoub N, Landrieux E, et al. Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription. Proc Natl Acad Sci U S A. 2007;104(25):10400–10405. DOI:10.1073/pnas.0704116104.
  • Sydow JF, Cramer P. RNA polymerase fidelity and transcriptional proofreading. Curr Opin Struct Biol. 2009;19(6):732–739.
  • Kettenberger H, Armache KJ, Cramer P. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell. 2003;114(3):347–357.
  • Neyer S, Kunz M, Geiss C, et al. Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature. 2016;540(7634):607–610. DOI:10.1038/nature20561.
  • Tafur L, Sadian Y, Hoffmann NA, et al. Molecular structures of transcribing RNA Polymerase I. Mol Cell. 2016;64(6):1135–1143. DOI:10.1016/j.molcel.2016.11.013.
  • Tafur L, Sadian Y, and Hanske J, et al. The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. Elife. 2019;8:e43204.
  • Han Y, Yan C, Fishbain S, et al. Structural visualization of RNA polymerase III transcription machineries. Cell Discov. 2018;4(1):40.
  • Vorlander MK, Khatter H, Wetzel R, et al. Molecular mechanism of promoter opening by RNA polymerase III. Nature. 2018;553(7688):295–300.
  • Abascal-Palacios G, Ramsay EP, Beuron F, et al. Structural basis of RNA polymerase III transcription initiation. Nature. 2018;553(7688):301–306.
  • Mishra S, Maraia RJ. RNA polymerase III subunits C37/53 modulate rU: dAhybrid 3ʹ end dynamics during transcription termination. Nucleic Acids Res. 2019;47(1):310–327.
  • Mishra S, Hasan SH, Sakhawala RM, et al. Mechanism of RNA polymerase III termination-associated reinitiation-recycling conferred by the essential function of the N terminal-and-linker domain of the C11 subunit. Nat Commun. 2021;12(1):5900.
  • Iben JR, Mazeika JK, Hasson S, et al. Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III. Nucleic Acids Res. 2011;39(14):6100–6113. DOI:10.1093/nar/gkr182.
  • Jasiak AJ, Armache KJ, Martens B, et al. Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model. Mol Cell. 2006;23(1):71–81.
  • Zaros C, Thuriaux P. Rpc25, a conserved RNA polymerase III subunit, is critical for transcription initiation. Mol Microbiol. 2005;55(1):104–114.
  • He Y, Yan C, Fang J, et al. Near-atomic resolution visualization of human transcription promoter opening. Nature. 2016;533(7603):359–365. DOI:10.1038/nature17970.
  • Plaschka C, Hantsche M, Dienemann C, et al. Transcription initiation complex structures elucidate DNA opening. Nature. 2016;533(7603):353–358.
  • Haurie V, Durrieu-Gaillard S, Dumay-Odelot H, et al. Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation. Proc Natl Acad Sci U S A. 2010;107(9):4176–4181. DOI:10.1073/pnas.0914980107.
  • Renaud M, Praz V, Vieu E, et al. Gene duplication and neofunctionalization: POLR3G and POLR3GL. Genome Res. 2014;24(1):37–51. DOI:10.1101/gr.161570.113.
  • Davis RB, Likhite N, Jackson CA, et al. Robust repression of tRNA gene transcription during stress requires protein arginine methylation. Life Sci Alliance. 2019;2(3):e201800261.
  • Blombach F, Salvadori E, Fouqueau T, et al. Archaeal TFEalpha/beta is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39. Elife. 2015;4:e08378.
  • Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell. 2012;45(4):439–446.
  • Upadhya R, Lee J, Willis IM. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol Cell. 2002;10(6):1489–1494.
  • Reina JH, Azzouz TN, Hernandez N. Maf1, a new player in the regulation of human RNA polymerase III transcription. PLoS One. 2006;1(1):e134.
  • Oficjalska-Pham D, Harismendy O, Smagowicz WJ, et al. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol Cell. 2006;22(5):623–632. DOI:10.1016/j.molcel.2006.04.008.
  • Roberts DN, Wilson B, Huff JT, et al. Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression. Mol Cell. 2006;22(5):633–644.
  • Graczyk D, Debski J, Muszynska G, et al. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation. Proc Natl Acad Sci U S A. 2011;108(12):4926–4931.
  • Desai N, Lee J, Upadhya R, et al. Two steps in Maf1-dependent repression of transcription by RNA polymerase III. J Biol Chem. 2005;280(8):6455–6462.
  • Vannini A, Ringel R, Kusser AG, et al. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell. 2010;143(1):59–70.
  • Vorlander MK, Baudin F, Moir RD, et al. Structural basis for RNA polymerase III transcription repression by Maf1. Nat Struct Mol Biol. 2020;27(3):229–232. DOI:10.1038/s41594-020-0383-y.
  • Bernard G, Chouery E, Putorti ML, et al. Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. Am J Hum Genet. 2011;89(3):415–423. DOI:10.1016/j.ajhg.2011.07.014.
  • Tetreault M, Choquet K, Orcesi S, et al. Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am J Hum Genet. 2011;89(5):652–655. DOI:10.1016/j.ajhg.2011.10.006.
  • Daoud H, Tetreault M, Gibson W, et al. Mutations in POLR3A and POLR3B are a major cause of hypomyelinating leukodystrophies with or without dental abnormalities and/or hypogonadotropic hypogonadism. J Med Genet. 2013;50(3):194–197. DOI:10.1136/jmedgenet-2012-101357.
  • Thiffault I, Wolf NI, Forget D, et al. Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nat Commun. 2015;6(1):7623. DOI:10.1038/ncomms8623.
  • Arimbasseri AG, Maraia RJ. RNA Polymerase III advances: structural and tRNA Functional Views. Trends Biochem Sci. 2016;41(6):546–559.
  • Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell. 2009;138(3):576–591.
  • Ablasser A, Bauernfeind F, Hartmann G, et al. RIG-I-dependent sensing of poly(dA: dT)through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol. 2009;10(10):1065–1072.
  • Ogunjimi B, Zhang SY, Sorensen KB, et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J Clin Invest. 2017;127(9):3543–3556. DOI:10.1172/JCI92280.
  • Carter-Timofte ME, Hansen AF, Mardahl M, et al. Varicella-zoster virus CNS vasculitis and RNA polymerase III gene mutation in identical twins. Neurol Neuroimmunol Neuroinflamm. 2018;5(6):e500. DOI:10.1212/NXI.000000000000500.
  • Carter-Timofte ME, Hansen AF, Christiansen M, et al. Mutations in RNA Polymerase III genes and defective DNA sensing in adults with varicella-zoster virus CNS infection. Genes Immun. 2019;20(3):214–223.