2,232
Views
6
CrossRef citations to date
0
Altmetric
Review

Bacterial RNA chaperones and chaperone-like riboregulators: behind the scenes of RNA-mediated regulation of cellular metabolism

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 419-436 | Received 31 Dec 2021, Accepted 26 Feb 2022, Published online: 19 Apr 2022

References

  • Tompa P, Csermely P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 2004;18(11):1169–1175.
  • Williamson JR. Induced fit in RNA-protein recognition. Nat Struct Biol. 2000;7(10):834–837.
  • Tauber D, Tauber G, Parker R. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem Sci. 2020;45(9):764–778.
  • Qureshi NS, Bains JK, Sreeramulu S, et al. Conformational switch in the ribosomal protein S1 guides unfolding of structured RNAs for translation initiation. Nucleic Acids Res. 2018;46(20):10917–10929. DOI:10.1093/nar/gky746.
  • Coetzee T, Herschlag D, Belfort M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev. 1994;8(13):1575–1588.
  • Quendera AP, Seixas AF, Dos Santos RF, et al. RNA-binding proteins driving the regulatory activity of small non-coding RNAs in bacteria. Front Mol Biosci. 2020;7:78.
  • Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol. 2011;9(8):578–589.
  • Tsui HT, Leung HE, Winkler ME. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K‐12. Mol Microbiol. 1994;13(1):35–49.
  • Robertson GT, Roop RM. The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol. 1999;34(4):690–700.
  • Djapgne L, Oglesby AG. Impacts of small rnas and their chaperones on bacterial pathogenicity. Front. Cell. Infect. Microbiol. 2021;11:561.
  • Schu DJ, Zhang A, Gottesman S, et al. Alternative Hfq‐ sRNA interaction modes dictate alternative mRNA recognition. EMBO J. 2015;34(20):2557–2573. DOI:10.15252/embj.201591569.
  • Sedlyarova N, Shamovsky I, Bharati BK, et al. sRNA-mediated control of transcription termination in E. coli. Cell. 2016;167(1):111–121.e13. DOI:10.1016/j.cell.2016.09.004.
  • Reyer MA, Chennakesavalu S, Heideman EM, et al. Kinetic modeling reveals additional regulation at co-transcriptional level by post-transcriptional sRNA regulators. Cell Rep. 2021;36(13):109764. DOI:10.1016/j.celrep.2021.109764.
  • Bossi L, Schwartz A, Guillemardet B, et al. A role for Rho-dependent polarity in gene regulation by a noncoding small RNA. Genes Dev. 2012;26(16):1864–1873. DOI:10.1101/gad.195412.112.
  • Sun X, Zhulin I, Wartell RM. Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res. 2002;30(17):3662–3671.
  • Bøggild A, Overgaard M, Valentin-Hansen P, et al. Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA-binding properties. FEBS J. 2009;276(14):3904–3915. DOI:10.1111/j.1742-4658.2009.07104.x.
  • Christopoulou N, Granneman S. The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. FEBS J. 2021. DOI:10.1111/febs.15810
  • Fröhlich KS, Velasco Gomariz M. RNA-controlled regulation in Caulobacter crescentus. Curr Opin Microbiol. 2021;60:1–7.
  • Jousselin A, Metzinger L, Felden B. On the facultative requirement of the bacterial RNA chaperone, Hfq. Trends Microbiol. 2009;17(9):399–405.
  • Bohn C, Rigoulay C, Bouloc P. No detectable effect of RNA-binding protein Hfq absence in staphylococcus aureus. BMC Microbiol. 2007;7(1):10.
  • Huntzinger E, Boisset S, Saveanu C, et al. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J. 2005;24(4):824–835. DOI:10.1038/sj.emboj.7600572.
  • Vincent HA, Henderson CA, Ragan TJ, et al. Characterization of Vibrio cholerae Hfq provides novel insights into the role of the Hfq C-terminal region. J Mol Biol. 2012;420(1–2):56–69. DOI:10.1016/j.jmb.2012.03.028.
  • Sauer E, Weichenrieder O. Structural basis for RNA 3′-end recognition by Hfq. Proc Natl Acad Sci USA. 2011;108(32):13065–13070.
  • Sauer E, Schmidt S, Weichenrieder O. Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc Natl Acad Sci USA. 2012;109(24):9396–9401.
  • Link TM, Valentin-Hansen P, Brennan RG. Structure of escherichia coli hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci USA. 2009;106(46):19292–19297.
  • Dimastrogiovanni D, Fröhlich KS, Bandyra KJ, et al. Recognition of the small regulatory RNA rydc by the bacterial hfq protein. eLife. 2014;3:e05375.
  • Pei XY, Dendooven T, Sonnleitner E, et al. Architectural principles for hfq/crc- mediated regulation of gene expression. eLife. 2019;8:e43158.
  • Krepl M, Dendooven T, Luisi BF, et al. MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes. J Biol Chem. 2021;296:100656.
  • Zheng A, Panja S, Woodson SA. Arginine patch predicts the rna annealing activity of hfq from gram-negative and gram-positive bacteria. J Mol Biol. 2016;428(11):2259–2264.
  • Zhang A, Schu DJ, Tjaden BC, et al. Mutations in interaction surfaces differentially impact E. coli hfq association with small RNAs and their mRNA targets. J Mol Biol. 2013;425(19):3678–3697. DOI:10.1016/j.jmb.2013.01.006.
  • Soper TJ, Woodson SA. The rpoS mRNA leader recruits hfq to facilitate annealing with dsrA sRNA. RNA. 2008;14(9):1907–1917.
  • Małecka EM, Strózecka J, Sobańska D, et al. Structure of bacterial regulatory RNAs determines their performance in competition for the chaperone protein Hfq. Biochemistry. 2015;54(5):1157–1170. DOI:10.1021/bi500741d.
  • Kajitani M, Kato A, Wada A, et al. Regulation of the Escherichia coli hfq gene encoding the host factor for phage Q(β). J. Bacteriol. American Society for Microbiology (ASM). 1994;176(2): 531–534
  • Park S, Prévost K, Heideman EM, et al. Dynamic interactions between the RNA chaperone hfq, small regulatory RNAs and mRNAs in live bacterial cells. eLife. 2021;10:1–45.
  • Diestra E, Cayrol B, Arluison V, et al. Cellular electron microscopy imaging reveals the localization of the hfq protein close to the bacterial membrane. PLoS One. 2009;4(12):e8301. DOI:10.1371/journal.pone.0008301.
  • Morita T, Maki K, Aiba H. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 2005;19(18):2176–2186.
  • Bruce HA, Du D, Matak-Vinkovic D, et al. Analysis of the natively unstructured RNA/protein-recognition core in the escherichia coli rna degradosome and its interactions with regulatory rna/hfq complexes. Nucleic Acids Res. 2018;46(1):387–402. DOI:10.1093/nar/gkx1083.
  • Kannaiah S, Livny J, Amster-Choder O. Spatiotemporal organization of the e. coli transcriptome: translation independence and engagement in regulation. Mol Cell. 2019;76(4):574–589.e7.
  • Brown DR, Barton G, Pan Z, et al. Nitrogen stress response and stringent response are coupled in escherichia coli. Nat Commun. 2014;5(1):4115. DOI:10.1038/ncomms5115.
  • McQuail J, Switzer A, Burchell L, et al. The RNA-binding protein Hfq assembles into foci-like structures in nitrogen starved Escherichia coli. J Biol Chem. 2020;295(35):12355–12367. DOI:10.1074/jbc.RA120.014107.
  • McQuail J, Carpousis AJ, Wigneshweraraj S. The association between hfq and rnase E in long-term nitrogen-starved Escherichia coli. Mol Microbiol. 2021;117(1):54–66.
  • Azam TA, Iwata A, Nishimura A, et al. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol. 1999;181(20):6361–6370. DOI:10.1128/JB.181.20.6361-6370.1999.
  • Wagner EGH. Cycling of RNAs on Hfq. RNA Biol. 2013;10(4):619–626.
  • Hussein R, Lim HN. Disruption of small RNA signaling caused by competition for Hfq. Proc Natl Acad Sci USA. 2011;108(3):1110–1115.
  • Moon K, Gottesman S. Competition among hfq-binding small RNAs in escherichia coli. Mol Microbiol. 2011;82(6):1545–1562.
  • Melamed S, Peer A, Faigenbaum-Romm R, et al. Global mapping of small rna-target interactions in bacteria. Mol Cell. 2016;63(5):884–897. DOI:10.1016/j.molcel.2016.07.026.
  • Melamed S, Adams PP, Zhang A, et al. RNA-RNA Interactomes of ProQ and Hfq Reveal Overlapping and Competing Roles. Mol Cell. 2020;77(2):411–425.e7. DOI:10.1016/j.molcel.2019.10.022.
  • Fender A, Elf J, Hampel K, et al. RNAs actively cycle on the Sm-like protein Hfq. Genes Dev. 2010;24(23):2621–2626. DOI:10.1101/gad.591310.
  • Małecka EM, Woodson SA. Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing. Mol Cell. 2021;81(9):1988–1999.e4.
  • Hoekzema M, Romilly C, Holmqvist E, et al. Hfq‐dependent mRNA unfolding promotes sRNA ‐based inhibition of translation. EMBO J. 2019;38(7):e101199. DOI:10.15252/embj.2018101199.
  • Peng Y, Curtis JE, Fang X, et al. Structural model of an mRNA in complex with the bacterial chaperone Hfq. Proc Natl Acad Sci USA. 2014;111(48):17134–17139. DOI:10.1073/pnas.1410114111.
  • Faigenbaum-Romm R, Reich A, Gatt YE, et al. Hierarchy in hfq chaperon occupancy of small rna targets plays a major role in their regulation. Cell Rep. 2020;30(9):3127–3138.e6. DOI:10.1016/j.celrep.2020.02.016.
  • Wang J, Rennie W, Liu C, et al. Identification of bacterial sRNA regulatory targets using ribosome profiling. Nucleic Acids Res. 2015;43(21):10308–10320. DOI:10.1093/nar/gkv1158.
  • Kunte HJ, Crane RA, Culham DE, et al. Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. J Bacteriol. 1999;181(5):1537–1543. DOI:10.1128/JB.181.5.1537-1543.1999.
  • Chaulk S G, Smith-Frieday MN, Arthur DC, et al. ProQ is an RNA chaperone that controls proP levels in escherichia coli. Biochemistry. 2011;50(15):3095–3106. DOI:10.1021/bi101683a.
  • van BT, Frost LS. The fino protein of incf plasmids binds finp antisense RNA and its target, traJ mRNA, and promotes duplex formation. Mol Microbiol. 1994;14(3):427–436.
  • Attaiech L, Boughammoura A, Brochier-Armanet C, et al. Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc Natl Acad Sci U S A. 2016;113(31):8813–8818. DOI:10.1073/pnas.1601626113.
  • Smirnov A, Förstner KU, Holmqvist E, et al. Grad-seq guides the discovery of proq as a major small RNA-binding protein. Proc Natl Acad Sci USA. 2016;113(41):11591–11596. DOI:10.1073/pnas.1609981113.
  • Olejniczak M, Storz G. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol Microbiol. 2017;104(6):905–915.
  • Gonzalez GM, Hardwick SW, Maslen SL, et al. Structure of the escherichia coli proQ RNA-binding protein. RNA. 2017;23(5):696–711. DOI:10.1261/rna.060343.116.
  • Pandey S, Gravel CM, Stockert OM, et al. Genetic identification of the functional surface for RNA binding by escherichia coli proQ. Nucleic Acids Res. 2020;48(8):4507–4520. DOI:10.1093/nar/gkaa144.
  • Rizvanovic A, Kjellin J, Söderbom F, et al. Saturation mutagenesis charts the functional landscape of salmonella proQ and reveals a gene regulatory function of its C-terminal domain. Nucleic Acids Res. 2021;49(17):9992–10006. DOI:10.1093/nar/gkab721.
  • Holmqvist E, Li L, Bischler T, et al. Global maps of proq binding in vivo reveal target recognition via rna structure and stability control at mrna 3′ ends. Mol Cell. 2018;70(5):971–982.e6. DOI:10.1016/j.molcel.2018.04.017.
  • Stein EM, Kwiatkowska J, Basczok MM, et al. Determinants of RNA recognition by the FinO domain of the Escherichia coli ProQ protein. Nucleic Acids Res. 2020;48(13):7502–7519. DOI:10.1093/nar/gkaa497.
  • El Mouali Y, Gerovac M, Mineikaite R, et al. In vivo targets of salmonella fino include a finp-like small RNA controlling copy number of a cohabitating plasmid. Nucleic Acids Res. 2021;49(9):5319–5335. DOI:10.1093/nar/gkab281.
  • Immer C, Hacker C, Wöhnert J. Solution structure and RNA-binding of a minimal proq-homolog from legionella pneumophila (lpp1663). RNA. 2020;26(12):2031–2043.
  • Bauriedl S, Gerovac M, Heidrich N, et al. The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition. Nat Commun. 2020;11(1):1–15. DOI:10.1038/s41467-020-16650-6.
  • Smirnov A, Wang C, Drewry LL, et al. Molecular mechanism of mRNA repression in trans by a ProQ‐dependent small RNA. EMBO J. 2017;36(8):1029–1045. DOI:10.15252/embj.201696127.
  • Berndt V, Beckstette M, Volk M, et al. Metabolome and transcriptome-wide effects of the carbon storage regulator A in enteropathogenic Escherichia coli. Sci Rep. 2019;9(1):138. DOI:10.1038/s41598-018-36932-w.
  • White D, Hart ME, Romeo T. Phylogenetic distribution of the global regulatory gene csrA among eubacteria. Gene. 1996;182(1–2):221–223.
  • Heeb S, Kuehne SA, Bycroft M, et al. Functional analysis of the post-transcriptional regulator rsmA reveals a novel RNA-binding site. J Mol Biol. 2006;355(5):1026–1036. DOI:10.1016/j.jmb.2005.11.045.
  • Müller P, Gimpel M, Wildenhain T, et al. A new role for CsrA: promotion of complex formation between an sRNA and its mRNA target in Bacillus subtilis. RNA Biol. 2019;16(7):972–987. DOI:10.1080/15476286.2019.1605811.
  • Gutiérrez P, Li Y, Osborne MJ, et al. Solution structure of the carbon storage regulator protein csra from escherichia coli. J Bacteriol. 2005;187(10):3496–3501. DOI:10.1128/JB.187.10.3496-3501.2005.
  • Rife C, Schwarzenbacher R, McMullan D, et al. Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 Å resolution reveals a new fold. Proteins Struct Funct Genet. 2005;61(2):449–453. DOI:10.1002/prot.20502.
  • Morris ER, Hall G, Li C, et al. Structural rearrangement in an rsma/csra ortholog of pseudomonas aeruginosa creates a dimeric rna-binding protein, rsmN. Structure. 2013;21(9):1659–1671. DOI:10.1016/j.str.2013.07.007.
  • Schubert M, Lapouge K, Duss O, et al. Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol. 2007;14(9):807–813. DOI:10.1038/nsmb1285.
  • Mercante J, Edwards AN, Dubey AK, et al. Molecular geometry of csra (rsma) binding to rna and its implications for regulated expression. J Mol Biol. 2009;392(2):511–528. DOI:10.1016/j.jmb.2009.07.034.
  • Duss O, Michel E, Yulikov M, et al. Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature. 2014;509(7502):588–592. DOI:10.1038/nature13271.
  • Liu MY, Gui G, Wei B, et al. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem. 1997;272(28):17502–17510. DOI:10.1074/jbc.272.28.17502.
  • Weilbacher T, Suzuki K, Dubey AK, et al. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol. 2003;48(3):657–670. DOI:10.1046/j.1365-2958.2003.03459.x.
  • Babitzke P, Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol. 2007;10(2):156–163.
  • Heeb S, Blumer C, Haas D. Regulatory RNA as mediator in gaca/rsma-dependent global control of exoproduct formation in pseudomonas fluorescens cha0. J Bacteriol. 2002;184(4):1046–1056.
  • Kay E, Dubuis C, Haas D. Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA. 2005;102(47):17136–17141.
  • Gudapaty S, Suzuki K, Wang X, et al. Regulatory interactions of csr components: the rna binding protein csra activates csrb transcription in escherichia coli. J Bacteriol. 2001;183(20):6017–6027. DOI:10.1128/JB.183.20.6017-6027.2001.
  • Parker A, Cureoglu S, De Lay N, et al. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol Microbiol. 2017;105(2):309–325. DOI:10.1111/mmi.13702.
  • Jørgensen MG, Thomason MK, Havelund J, et al. Dual function of the mcaS small RNA in controlling biofilm formation. Genes Dev. 2013;27(10):1132–1145. DOI:10.1101/gad.214734.113.
  • Ye F, Yang F, Yu R, et al. Molecular basis of binding between the global post-transcriptional regulator csrA and the T3SS chaperone CesT. Nat Commun. 2018;9(1):1196. DOI:10.1038/s41467-018-03625-x.
  • Altegoera F, Rensingb SA, Bangea G. Structural basis for the csrA-dependent modulation of translation initiation by an ancient regulatory protein. Proc Natl Acad Sci USA. 2016;113(36):10168–10173.
  • Yakhnin H, V YA, Baker CS, et al. Complex regulation of the global regulatory gene csrA: csra-mediated translational repression, transcription from five promoters by eσ70 and eσS, and indirect transcriptional activation by CsrA. Mol Microbiol. 2011;81(3):689–704. DOI:10.1111/j.1365-2958.2011.07723.x.
  • Suzuki K, Babitzke P, Kushner SR, et al. Identification of a novel regulatory protein (csrd) that targets the global regulatory rnas csrb and csrc for degradation by rnase e. Genes Dev. 2006;20(18):2605–2617. DOI:10.1101/gad.1461606.
  • Santiago-Frangos A, Jeliazkov JR, Gray JJ, et al. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife. 2017;6:e27049.
  • Večerek B, Rajkowitsch L, Sonnleitner E, et al. The C-terminal domain of escherichia coli hfq is required for regulation. Nucleic Acids Res. 2008;36(1):133–143. DOI:10.1093/nar/gkm985.
  • Olsen AS, Møller-Jensen J, Brennan RG, et al. C-terminally truncated derivatives of escherichia coli hfq are proficient in riboregulation. J Mol Biol. 2010;404(2):173–182. DOI:10.1016/j.jmb.2010.09.038.
  • Santiago-Frangos A, Kavita K, Schu DJ, et al. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc Natl Acad Sci USA. 2016;113(41):E6089–E6096. DOI:10.1073/pnas.1613053113.
  • Santiago-Frangos A, Fröhlich KS, Jeliazkov JR, et al. Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proc Natl Acad Sci USA. 2019;166(22):10978–10987. DOI:10.1073/pnas.1814428116.
  • Kavita K, Zhang A, Tai C-H, et al. Multiple in vivo roles for the C-terminal domain of the RNA chaperone Hfq. Nucleic Acids Res. 2022;50(3):1718–1733. gkac017. DOI:10.1093/nar/gkac017.
  • El Mouali Y, Ponath F, Scharrer V, et al. Scanning mutagenesis of RNA-binding protein proQ reveals a quality control role for the Lon protease. RNA. 2021;27(12):1512–1527. DOI:10.1261/rna.078954.121.
  • Hersch SJ, Radan B, Ilyas B, et al. Stress-induced block in dicarboxylate uptake and utilization in salmonella enterica serovar typhimurium. J Bacteriol. 2021;203(9):e00487–20. DOI:10.1128/JB.00487-20.
  • Karlinsey JE, Tanaka S, Bettenworth V, et al. Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to flgm secretion and fliC transcription. Mol Microbiol. 2000;37(5):1220–1231. DOI:10.1046/j.1365-2958.2000.02081.x.
  • Fitzgerald DM, Bonocora RP, Wade JT. Comprehensive mapping of the escherichia coli flagellar regulatory network. PLoS Genet. 2014;10(10):e1004649.
  • Kalir S, McClure J, Pabbaraju K, et al. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science. 2001;292(5524):2080–2083. DOI:10.1126/science.1058758.
  • Kutsukake K, Ohya Y, Iino T. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol. 1990;172(2):741–747.
  • Bewick AJ, Schmitz RJ. Gene body DNA methylation in plants. 2017;Curr. Opin. Plant Biol. 36:103–110. 10.1016/j.pbi.2016.12.007
  • Iosub IA, van Nues RW, McKellar SW, et al. Hfq CLASH uncovers sRNA-target interaction networks linked to nutrient availability adaptation. eLife. 2020;9:e54655.
  • Bilusic I, Popitsch N, Rescheneder P, et al. Revisiting the coding potential of the E. coli genome through Hfq co-immunoprecipitation. RNA Biol. 2014;11(5):641–654. DOI:10.4161/rna.29299.
  • Sittka A, Lucchini S, Papenfort K, et al. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet. 2008;4(8):e1000163. DOI:10.1371/journal.pgen.1000163.
  • Zhang A, Wassarman KM, Rosenow C, et al. Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol. 2003;50(4):1111–1124. DOI:10.1046/j.1365-2958.2003.03734.x.
  • Otaka H, Ishikawa H, Morita T, et al. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci USA. 2011;108(32):13059–13064. DOI:10.1073/pnas.1107050108.
  • Westermann AJ, Venturini E, Sellin ME, et al. The major RNA-binding protein proq impacts virulence gene expression in salmonella enterica serovar typhimurium. MBio. 2019;10(1):e02504–18. DOI:10.1128/mBio.02504-18.
  • Holmqvist E, Wright PR, Li L, et al. Global RNA recognition patterns of post‐transcriptional regulators hfq and csrA revealed by UV crosslinking in vivo. EMBO J. 2016;35(9):991–1011. DOI:10.15252/embj.201593360.
  • Heidrich N, Bauriedl S, Barquist L, et al. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res. 2017;45(10):6147–6167. DOI:10.1093/nar/gkx168.
  • Leonard S, Villard C, Nasser W, et al. RNA chaperones hfq and proq play a key role in the virulence of the plant pathogenic bacterium dickeya dadantii. Front Microbiol. 2021;12:1683.
  • Večerek B, Moll I, Bläsi U. Translational autocontrol of the escherichia coli hfq RNA chaperone gene. RNA. 2005;11(6):976–984.
  • Baker CS, Eöry LA, Yakhnin H, et al. CsrA inhibits translation initiation of escherichia coli hfq by binding to a single site overlapping the shine-dalgarno sequence. J Bacteriol. 2007;189(15):5472–5481. DOI:10.1128/JB.00529-07.
  • Lai YJ, Yakhnin H, Pannuri A, et al. CsrA regulation via binding to the base-pairing small RNA Spot 42. Mol Microbiol. 2021;117(1):32–53. DOI:10.1111/mmi.14769.
  • Stenum TS, Holmqvist E. CsrA enters hfq’s territory: regulation of a base-pairing small RNA. Mol Microbiol. 2021;117(1):4–9.
  • Gebhardt MJ, Kambara TK, Ramsey KM, et al. Widespread targeting of nascent transcripts by rsma in pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2020;117(9):10520–10529. DOI:10.1073/pnas.1917587117.
  • Kambara TK, Ramsey KM, Dove SL. Pervasive targeting of nascent transcripts by hfq. Cell Rep. 2018;23(5):1543–1552.
  • Sonnleitner E, Bläsi U. Regulation of hfq by the rna crcz in pseudomonas aeruginosa carbon catabolite repression. PLoS Genet. 2014;10(6):e1004440.
  • Sonnleitner E, Wulf A, Campagne S, et al. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa. Nucleic Acids Res. 2018;46(3):1470–1485. DOI:10.1093/nar/gkx1245.
  • Corona F, Reales-Calderón JA, Gil C, et al. The development of a new parameter for tracking post-transcriptional regulation allows the detailed map of the pseudomonas aeruginosa crc regulon. Sci Rep. 2018;8(1):16793. DOI:10.1038/s41598-018-34741-9.
  • Malecka EM, Bassani F, Dendooven T, et al. Stabilization of Hfq-mediated translational repression by the co-repressor Crc in Pseudomonas aeruginosa. Nucleic Acids Res. 2021;49(12):7075–7087. DOI:10.1093/nar/gkab510.
  • Dendooven T, Sonnleitner E, Bläsi U, et al. Polymorphic ribonucleoprotein folding supports translational regulation in Pseudomonas aeruginosa. bioRxiv 2022.02.11.480102.
  • Mackie GA. RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol. 2013;11(1):45–57.
  • Callaghan AJ, Marcaida MJ, Stead JA, et al. Structure of escherichia coli rNase E catalytic domain and implications for RNA turnover. Nature. 2005;437(7062):1187–1191. DOI:10.1038/nature04084.
  • Dendooven T, Paris G, V SA, et al. Multi-scale ensemble properties of the escherichia coli RNA degradosome. Mol Microbiol. 2021;117(1):102–120. DOI:10.1111/mmi.14800.
  • Bandyra KJ, Said N, Pfeiffer V, et al. The seed region of a small rna drives the controlled destruction of the target mrna by the endoribonuclease rnase E. Mol Cell. 2012;47(6):943–953. DOI:10.1016/j.molcel.2012.07.015.
  • Caillet J, Baron B, V BI, et al. Identification of protein-protein and ribonucleoprotein complexes containing Hfq. Sci Rep. 2019;9(1):14054. DOI:10.1038/s41598-019-50562-w.
  • Worrall JAR, Górna M, Crump NT, et al. Reconstitution and analysis of the multienzyme escherichia coli RNA degradosome. J Mol Biol. 2008;382(4):870–883. DOI:10.1016/j.jmb.2008.07.059.
  • Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: Not merely an rNase but a pivotal post-transcriptional regulator. PLoS Genet. 2018;14(10):e1007654.
  • Dendooven T, Sinha D, Roeselová A, et al. A cooperative PNPase-Hfq-RNA carrier complex facilitates bacterial riboregulation. Mol Cell. 2021;81(14):2901–2913.e5. DOI:10.1016/j.molcel.2021.05.032.
  • Jiang W, Hou Y, Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem. 1997;272(1):196–202.
  • Yamanaka K, Fang L, Inouye M. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol. 1998;27(2):247–255.
  • Rennella E, Sára T, Juen M, et al. RNA binding and chaperone activity of the E. coli cold-shock protein Cspa. Nucleic Acids Res. 2017;45(7):4255–4268.
  • Woodson SA, Panja S, Santiago-Frangos A. Proteins that chaperone RNA regulation. Microbiol Spectr. 2018;6(4). DOI:10.1128/microbiolspec.RWR-0026-2018
  • Semrad K, Green R, Schroeder R. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. RNA. 2004;10(12):1855–1860.
  • Mayer O, Rajkowitsch L, Lorenz C, et al. RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res. 2007;35(4):1257–1269. DOI:10.1093/nar/gkl1143.
  • Deighan P, Free A, Dorman CJ. A role for the Escherichia coli H-NS-like protein StpA in OmpF porin expression through modulation of micF RNA stability. Mol Microbiol. 2000;38(1):126–139.
  • Hohmann KF, Blümler A, Heckel A, et al. The RNA chaperone StpA enables fast RNA refolding by destabilization of mutually exclusive base pairs within competing secondary structure elements. Nucleic Acids Res. 2021;49(19):11337–11349. DOI:10.1093/nar/gkab876.
  • Herschlag D. RNA chaperones and the RNA folding problem. J Biol Chem. 1995;270(36):20871–20874.
  • Gaballa A, Antelmann H, Aguilar C, et al. The bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci. 2008;105(33):11927–11932. DOI:10.1073/pnas.0711752105.
  • Olejniczak M, Jiang X, Basczok MM, et al. KH domain proteins: another family of bacterial RNA matchmakers? Mol Microbiol. 2021;117(1):10–19. DOI:10.1111/mmi.14842.
  • Zheng JJ, Perez AJ, Tsui HCT, et al. Absence of the khpa and khpb (jag/elor) rna-binding proteins suppresses the requirement for pbp2b by overproduction of ftsa in streptococcus pneumoniae D39. Mol Microbiol. 2017;106(5):793–814. DOI:10.1111/mmi.13847.
  • Lamm-Schmidt V, Fuchs M, Sulzer J, et al. Grad-seq identifies KhpB as a global RNA-binding protein in Clostridioides difficile that regulates toxin production. MicroLife 2021;2(2):4.
  • Beaufay F, Amemiya HM, Guan J, et al. Polyphosphate drives bacterial heterochromatin formation. Sci Adv. 2021;7(52):233. DOI:10.1126/sciadv.abk0233.
  • Bauriedl S, Gerovac M, Heidrich N, et al. The minimal meningococcal proq protein has an intrinsic capacity for structure-based global RNA recognition. Nat Commun. 2020;11(1):1–15.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780.