3,314
Views
3
CrossRef citations to date
0
Altmetric
Review

Recent advances and potential applications of cross-kingdom movement of miRNAs in modulating plant’s disease response

, ORCID Icon &
Pages 519-532 | Received 07 Oct 2021, Accepted 31 Mar 2022, Published online: 20 Apr 2022

References

  • Ying SY, Chang DC, Lin SL. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol. 2008;38(3):257–268.
  • O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.
  • Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107–126.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
  • Lee RC, Feinbaum RL, The AV. C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854.
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans Cell. 1993;75(5):855–862.
  • Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901.
  • Axtell MJ, Westholm JO, Lai EC. Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol. 2011;12(4):221.
  • Reinhart B, Weinstein E, Rhoades M, et al. MicroRNAs in plants. Gene Dev. 2002;16(13):1616–1626.
  • Llave C, Kasschau K, Rector M, et al. Endogenous and silencing-associated small RNAs in plants. Plant Cell. 2002;14(7):1605–1619.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162.
  • Kozomara A, Griffiths-J S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(D1):D68–D73.
  • Zhang Z, Yu J, Li D, et al. PMRD: plant microRNA database. Nucleic Acids Res. 2010;38(suppl_1):806–813.
  • Guo Z, Kuang Z, Wang Y, et al. PmiREN: a comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res. 2020;48(1):1114–1121.
  • Guo Z, Kuang Z, Zhao Y, et al. PmiREN2.0: from data annotation to functional exploration of plant microRNAs. In: Nucleic acids research. 2021;D1475–D1482.
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function, and decay. Nature Reviews Genetics. 2010;11(9):597–610.
  • Nazarov PV, Reinsbach SE, Muller A, et al. Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res. 2013;41(5):2817–2831.
  • Kim J, Jung JH, Reyes JL, et al. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J Cell Mol Boil. 2005;42(1):84–94.
  • Guo HS, Xie Q, Fei JF, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell. 2005;17(5):1376–1386.
  • Gautam V, Singh A, Verma S, et al. Role of miRNAs in root development of model plant Arabidopsis thaliana. Indian Journal of Plant Physiology. 2017;22(4):382–392.
  • Lauter N, Kampani A, Carlson S, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA. 2005;102(26):9412–9417.
  • Chen XA. microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004;303(5666):2022–2025.
  • Chen X, Liang H, Zhang J, et al. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22(3):125–132.
  • Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, et al. Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection. Front Plant Sci. 2017;8:378.
  • Zhao J-P, Jiang X-L, Zhang B-Y, et al. Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in populus trichocarpa. PLoS ONE. 2012;7(9):e44968.
  • Gupta OP, Permar V, Koundal V, et al. MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection. Mol Biol Rep. 2012;39(2):817–824.
  • Weiberg A, Wang M, Lin FM, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 2013;342(6154):118–123.
  • Zeng J, Gupta VK, Jiang Y, et al. Cross-Kingdom small RNAs among animals, plants and microbes. Cells. 2019;8(4):371.
  • LaMonte G, Philip N, Reardon J, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12(2):187–199.
  • Hua C, Zhao JH, Guo HS. Trans-Kingdom RNA silencing in plant-fungal pathogen interactions. Mol Plant. 2018;11(2):235–244.
  • Pierre-Jerome E, Drapek C, Benfey PN. Regulation of division and differentiation of plant stem cells. Annual Review of Cell and Developmental Biology. 2018;34(1):289–310.
  • Sanchita TR, Asif MH, Trivedi PK. Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation. RNA Biol. 2018;15(12):1433–1439.
  • Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A. 2004;101(34):12753–12758.
  • Wahid F, Shehzad A, Khan T, et al. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803(11):1231–1243.
  • Wang J, Mei J, Ren G. Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci. 2019;10:360.
  • Li M, Yu B. Recent advances in the regulation of plant miRNA biogenesis. RNA Biol. 2021;18(12):2087–2096.
  • Tiwari M, Sharma D, Trivedi PK. Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol. 2014;86(1–2):1–18.
  • Wang ZH, Xu CJ. Research progress of microRNA in early detection of ovarian cancer. Chin Med J (Engl). 2015;128(24):3363–3370.
  • Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–419.
  • Xie M, Steitz JA. Versatile microRNA biogenesis in animals and their viruses. RNA Biol. 2014;11(6):673–681.
  • Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–3016.
  • Lund E, Güttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–98.
  • Bohnsack MT, Czaplinski K, Exportin GD. 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10(2):185–191.
  • Grishok A, Pasquinelli AE, Conte D, et al. Genes and MeC.anisms related to RNA InterferenC. regulate expression of the small temporal RNAs that C.ntrol C. elegans developmental Timing. Elegans Developmental Timing. Cell 2001;106(1):23–34.
  • Knight SW, Bass BL. A role for the RNase III Enzyme DCR-1 in RNA interference and Germ line development in caenorhabditis elegans. Science. 2001;293(5538):2269–2271.
  • Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–744.
  • Lee Y, Hur I, Park SY, et al. The role of PACT in the RNA silencing pathway. EMBO J. 2006;25(3):522–532.
  • Millar AA, Waterhouse PM, Millar A A, and Waterhouse PM. Plant and animal microRNAs: similarities and differences. Funct Integr Genomics. 2005;5(3):129–135.
  • Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004;16(8):2001–2019.
  • Lanet E, Delannoy E, Sormani R, et al. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell. 2009;21(6):1762–1768.
  • Hwang DG, Park JH, Lim JY, et al. The hot pepper (C. annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding MicroRNA functional roles in hot pepper. PloS one. 2013;8(5):e64238.
  • Rajwanshi R, Devi KJ, Sharma GR, et al. Role of miRNAs. In: Interaction P-M, Kumar M, Muthusamy A, et al., editors. In vitro plant breeding towards novel agronomic traits. Singapore: Springer; 2019. 167–195.
  • Basso MF, Ferreira PCG, Kobayashi AK, et al. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J. 2019;17(8):1482–1500.
  • Chandran V, Wang H, Gao F, et al. miR396-OsGRFs module balances growth and rice blast disease-resistance. Frontiers in Plant Science. 2019;9:1999.
  • Jaubert-Possamai S, Noureddine Y, MicroRNAs FB. New players in the plant–nematode interaction. Frontiers in Plant Science. 2019;10:1180.
  • Chopperla R, Mangrauthia SK, Bhaskar RT, et al. Comprehensive analysis of MicroRNAs expressed in susceptible and resistant rice cultivars during rhizoctonia solani AG1-IA infection causing sheath blight disease. Int J Mol Sci. 2020;21(21):7974.
  • Jin Y, Guo HS. Plant small RNAs responsive to fungal pathogen infection. Methods Mol Biol. 2018;1848:67–80.
  • Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signalling. Science. 2006;312(5772):436–439.
  • Peláez P, Small SF. RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Front Plant Sci. 2013;4:343.
  • Natarajan B, Kalsi HS, Godbole P. MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J Exp Bot. 2018;69(8):2023–2036.
  • Li Y, Zhang Q, Zhang J, et al. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiology. 2010;152(4):2222–2231.
  • Yang X, Zhang L, Yang Y, et al. miRNA mediated regulation and interaction between plants and pathogens. Int J Mol Sci. 2021;22(6):2913.
  • Zhang B, Li W, Zhang J, et al. Roles of small RNAs in virus-plant interactions. Viruses. 2019;11(9):827.
  • Tomilov A, Tomilova NB, Wroblewski T, et al. Yoder JI Trans-specific gene silencing between host and parasitic plants. Plant J. 2008;56(3):389–397.
  • Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013;12(1):103.
  • Knip M, Constantin ME, Thordal-Christensen H. Trans-kingdom cross-talk: small RNAs on the move. PLoS Genet. 2014;10(9):e1004602.
  • Weiberg A, Bellinger M, Jin H. Conversations between kingdoms: small RNAs. Curr Opin Biotechnol. 2015;32:207–215.
  • Gualtieri C, Leonetti P, Macovei A. Plant miRNA cross-kingdom transfer targeting parasitic and mutualistic organisms as a tool to advance modern agriculture. Frontiers in Plant Science. 2020;11:930.
  • Wang M, Weiberg A, Jin H. Pathogen small RNAs: a new class of effectors for pathogen attacks. Molecular Plant Pathology. 2015;16(3):219–223.
  • Wang M, Weiberg A, Lin FM, et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants. 2016;2(10):16151.
  • Islam W, Noman A, Qasim M, et al. Plant responses to pathogen attack: small RNAs in focus. International Journal of Molecular Sciences. 2018;19(2):515.
  • Islam W, Qasim M, Noman A, et al. Plant microRNAs: front line players against invading pathogens. Microb Pathog. 2018;118:9–17.
  • Gupta OP, Sharma P, Kumar GR, et al. Current status on role of miRNAs during plant-fungus interaction. Physiological and Molecular Plant Pathology. 2014;85:1–7.
  • Zhang T, Zhao YL, Zhao JH, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants. 2016;2(10):16153.
  • Yin Z, Li Y, Han X, et al. Genome-wide profiling of miRNAs and other small 799 non-coding RNAs in the verticillium dahliae–Inoculated cotton roots. PLoS One. 2012;7:800 e35765.
  • Li Y, Lu YG, Shi Y, et al. Multiple rice microRNAs are involved in immunity against the blast fungus magnaporthe oryzae. Plant Physiol. 2014;164(2):1077–1092.
  • Zvereva AS, Pooggin MM. Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses. 2012;4(11):2578–2597.
  • Bordoloi KS, Agarwala N. MicroRNAs in plant-insect interaction and insect pest control. Plant Genet. 2021;26:100271. 2352-4073.
  • Zhang LL, Jing XD, Chen W, et al. Host plant-derived miRNAs potentially modulate the development of a cosmopolitan insect pest Plutella xylostella. Biomolecules. 2019a;9(10):602.
  • Wang W, Liu D, Zhang X, et al. Plant micrornas in cross-kingdom regulation of gene expression. Int J Mol Sci. 2018;19(7):1–12.
  • Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond). 2018;15(1):68.
  • Liu L, Chen X. Intercellular and systemic trafficking of RNAs in plants. Nat Plants. 2018;4(11):869–878.
  • Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136(4):669–687.
  • Winter N, Kragler F. Conceptual and methodological considerations on mRNA and proteins as intercellular and long-distance signals. Plant Cell Physiol. 2018;59(9):1700–1713.
  • Zhou Z, Li X, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A virus. Cell Res. 2015;25(1):39–49.
  • Yang J, Hotz T, Broadnax L, et al. Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911. Sci Rep. 2016;6(1):26834.
  • Xie W, Weng A, Melzig MF. MicroRNAs as new bioactive components in medicinal plants. Planta Med. 2016;82(13):1153–1162.
  • Chin AR, Fong MY, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant MIR159. Cell Res. 2016;26(2):217–228.
  • Wang M, Dean RA. Movement of small RNAs in and between plants and fungi. Mol Plant Pathol. 2020;21(4):589–601.
  • Behrouzi A, Alimohammadi M, Nafari AH, et al. The role of host miRNAs on mycobacterium tuberculosis. ExRNA. 2019;1(1):40.
  • Huang J, Yang M, Lu L, et al. Diverse functions of small RNAs in different plant-pathogen communications. Front microb. 2016;7:1552.
  • Cai Q, Qiao L, Wang M, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360(6393):1126–1129.
  • Tinoco MLP, Dias BB, Dall’Astta RC, et al. In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol. 2010;8(27). DOI:10.1186/1741-7007-8-27.
  • Huang G, Allen R, Davis EL, et al. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences. 2006;103(39):14302–14306.
  • Tian B, Li J, Vodkin L, et al. Host derived gene silencing of parasite fitness genes improves resistance to soybean cyst nematodes in stable transgenic soybean. Theoretical and Applied Genetics. 2019;132(9):2651–2662.
  • Hewezi T, Howe P, Maier TR, et al. Arabidopsis small RNAs and their targets during cyst nematode parasitism. Molecular Plant-Microbe Interactions®. 2008;21(12):1622–1634.
  • Li X, Wang X, Zhang S, et al. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PloS One. 2012;7(6):e39650.
  • Lei P, Han B, Wang Y, et al. Identification of microRNAs that respond to soybean cyst nematode infection in early stages in resistant and susceptible soybean cultivars. International Journal of Molecular Sciences. 2019;20(22):5634.
  • Pan X, Nichols RL, Li C, et al. MicroRNA-target gene responses to root knot nematode (Meloidogyne incognita) infection in cotton (Gossypium hirsutum L.). Genomics. 2019;111(3):383–390.
  • Zhang Y, Wiggins BE, Lawrence C, et al. Analysis of plant-derived miRNAs in animal small RNA datasets. BMC Genomics. 2012;13(1):381.
  • Wang H, Zhang C, Dou Y, et al. Insect and plant-derived miRNAs in greenbug (Schizaphis graminum) and yellow sugarcane aphid (Sipha flava) revealed by deep sequencing. Gene. 2017b;599:68–77.
  • Wang B, Sun Y, Song N, et al. Puccinia striiformis f. sp. tritici mi croRNA -like RNA 1 (Pst -milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytol. 2017a;215(1):338–350.
  • Wang M, Weiberg A, E D Jr, et al. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biol. 2017;14(4):421–428.
  • Brilli M, Asquini E, Moser M, et al. A multi-omics study of the grapevine-downy mildew (Plasmopara viticola) pathosystem unveils a complex protein coding- and noncoding-based arms race during infection. Sci Rep. 2018;8(1):757.
  • Burgyan J, Havelda Z. Viral suppressors of RNA silencing. Trends Plant Sci. 2011;16(5):265–272.
  • Wang MB, Masuta C, Smith NA, et al. RNA silencing and plant viral diseases. Molecular Plant-Microbe Interactions®. 2012;25(10):1275–1285.
  • Moon JY, Park JM. Cross-talk in viral defense signaling in plants. Frontiers in Microbiology. 2016;7:2068.
  • Pumplin N, Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology. 2013;11(11):745–760.
  • Liu SR, Zhou JJ, Hu CG, et al. MicroRNA-mediated gene silencing in plant defense and viral counter-defense. Front Microbiol. 2017;8:1801.
  • Zhu K, Liu M, Fu Z, et al. Plant microRNAs in larval food regulate honeybee caste development. PLOS Genetics. 2017;13(8):e1006946.
  • Silvestri A, Fiorilli V, Miozzi L, et al. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics. 2019;20(1):169.
  • Snow JW, Hale AE, Isaacs SK, et al. Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol. 2013;10(7):1107–1116.
  • Masood M, Everett CP, Chan SY, et al. Negligible uptake and transfer of diet-derived pollen microRNAs in adult honey bees. RNA Biol. 2016;13(1):109–118.
  • Wang M, Thomas N, Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Current Opinion in Plant Biology. 2017;38:133–141.
  • Qiao L, Lan C, Capriotti L, et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J. 2021;19(9):1756–1768.
  • Fisher MC, Hawkins NJ, Sanglard D, et al. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science. 2018;360(6390):739–742.
  • Cagliari D, Dias NP, Galdeano DM, et al. Management of pest insects and plant diseases by non-transformative RNAi. Frontiers in Plant Science. 2019;10:1319.
  • Van EE, Powell CA, Shatters RG, et al. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase. J Insect Physiol. 2014;70:143–150.
  • Song XS, Gu KX, Duan XX, et al. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing. Mol Plant Pathol. 2018;19(12):2543–2560.
  • Niehl A, Soininen M, Poranen MM, et al. Synthetic biology approach for plant protection using dsRNA. Plant Biotechnol J. 2018;16(9):1679–1687.
  • Koch A, Biedenkopf D, Furch A, et al. An RNAi-based control of fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 2016;12(10):e1005901.
  • Wang M, Jin H. Spray-Induced gene silencing: a powerful innovative strategy for crop protection. Trends in Microbiology. 2017;25(1):4–6.
  • McLoughlin AG, Wytinck N, Walker PL, et al. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and botrytis cinerea. Scientific Reports. 2018;8(1):7320.
  • Werner BT, Gaffar FY, Schuemann J, et al. RNA-spray-mediated silencing of fusarium graminearum AGO and DCL genes improve barley disease resistance. Front Plant Sci. 2020;11:476.
  • Chen W, Kastner C, Nowara D, et al. Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J Exp Bot. 2016;67(17):4979–4991.
  • Govindarajulu M, Epstein L, Wroblewski T, et al. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. Plant Biotechnol J. 2015;13(7):875–883.
  • Song Y, Thomma B. Host-induced gene silencing compromises verticillium wilt in tomato and Arabidopsis. Molecular Plant Pathology. 2018;19(1):77–89.
  • Andrade C, Tinoco M, Rieth A, et al. Host-induced gene silencing in the necrotrophic fungal pathogen sclerotinia sclerotiorum. Plant Pathol. 2015;65(4):626–632.
  • Jahan SN, Åsman AK, Corcoran P, et al. Plant-mediated gene silencing restricts growth of the potato late blight pathogen phytophthora infestans. J Exp Bot. 2015;66(9):2785–2794.
  • Zhou B, Bailey A, Niblett CL, et al. Control of brown patch (Rhizoctonia solani) in tall fescue (Festuca arundinacea Schreb.) by host induced gene silencing. Plant Cell Rep. 2016;35(4):791–802.
  • Nowara D, Gay A, Lacomme C, et al. HIGS: host-Induced gene silencing in the obligate biotrophic fungal pathogen blumeria graminis. Plant Cell. 2010;22(9):3130–3141.
  • Zhang H, Guo J, Voegele RT, et al. Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in puccinia striiformis f. sp. tritici using a host-induced RNAi system. PLoS ONE. 2012;7(11):e49262.
  • Zhu X, Qi T, Yang Q, et al. Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol. 2017;175(4):1853–1863.
  • Qi T, Zhu X, Tan C, et al. Host-induced gene silencing of an important pathogenicity factor PsCPK1 in puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnol J. 2018;16(3):797–807.
  • Thakur A, Sanju S, Siddappa S, et al. Artificial MicroRNA mediated gene silencing of phytophthora infestans single effector Avr3a gene imparts moderate type of late blight resistance in potato. Plant Pathology Journal. 2015;14(1):1–12.
  • Hou Y, Zhai Y, Feng L, et al. A phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe. 2019;25(1):153–165.e5.
  • Guo H, Song X, Wang G, et al. Plant-generated artificial small RNAs mediated aphid resistance. PLoS One. 2014;9(5):e97410.
  • Saini RP, Raman V, Dhandapani G, et al. Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera. PloS One. 2018;13(3):e0194150.
  • Agrawal A, Rajamani V, Reddy VS, et al. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology. Transgenic Res. 2015;24(5):791–801.
  • Jiang S, Wu H, Liu H, et al. The overexpression of insect endogenous small RNAs in transgenic rice inhibits growth and delays pupation of striped stem borer (chilo suppressalis). Pest Management Science. 2016;73(7):1453–1461.
  • Miozzi L, Gambino G, Burgyan J, et al. Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. Mol Plant Pathol. 2013;14(1):30–43.
  • Wang XB, Wu Q, Ito T, et al. RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2010;107(1):484–489.
  • Donaire L, Barajas D, Martínez-García B, et al. Structural and genetic requirements for the biogenesis of tobacco rattle Virus -derived small interfering RNAs. Journal of Virology. 2008;82(11):5167–5177.
  • Shahid S, Kim G, Johnson NR, et al. MicroRNAs from the parasitic plant cuscuta campestris target host messenger RNAs. Nature. 2018;553(7686):82–85.
  • Hudzik C, Hou Y, Ma W, et al. Exchange of small regulatory rnas between plants and their pests. Plant Physiology. 2020;182(1):51–62.