2,406
Views
2
CrossRef citations to date
0
Altmetric
Review

Mechanisms of ribosome recycling in bacteria and mitochondria: a structural perspective

ORCID Icon & ORCID Icon
Pages 662-677 | Received 14 Dec 2021, Accepted 13 Apr 2022, Published online: 29 Apr 2022

References

  • Hussain T, Llacer JL, Wimberly BT, et al. Large-scale movements of IF3 and tRNA during bacterial translation initiation. Cell. 2016;167:133–144 e113.
  • Sprink T, Ramrath DJ, Yamamoto H, et al. Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association. Sci Adv. 2016;2:e1501502.
  • Kaledhonkar S, Fu Z, Caban K, et al. Late steps in bacterial translation initiation visualized using time-resolved cryo-EM. Nature. 2019;570(7761):400–404. DOI:10.1038/s41586-019-1249-5.
  • Gao YG, Selmer M, Dunham CM, et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science. 2009;326:694–699.
  • Schmeing TM, Voorhees RM, Kelley AC, et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science. 2009;326:688–694.
  • Loveland AB, Demo G, Grigorieff N, et al. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature. 2017;546:113–117.
  • Loveland AB, Demo G, Korostelev AA. Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading. Nature. 2020;584:640–645.
  • Tourigny DS, Fernandez IS, Kelley AC, et al. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science. 2013;340(6140):1235490.
  • Zhou J, Lancaster L, Donohue JP, et al. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science. 2013;340:1236086.
  • Pulk A, Cate JH. Control of ribosomal subunit rotation by elongation factor G. Science. 2013;340:1235970.
  • Petrychenko V, Peng BZ, Apsac D, et al. Structural mechanism of GTPase-powered ribosome-tRNA movement. Nat Commun. 2021;12:5933.
  • Carbone CE, Loveland AB, Gamper H, et al. Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP. Nat Commun. 2021;12:12.
  • Salsi E, Farah E, Netter Z, et al. Movement of elongation factor G between compact and extended conformations. J Mol Biol. 2015;427(2):454–467.
  • Stark H, Rodnina MV, Wieden HJ, et al. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell. 2000;100:301–309.
  • Lin J, Gagnon MG, Bulkley D, et al. Conformational changes of elongation factor g on the ribosome during trna translocation. Cell. 2015;160(1–2):219–227.
  • Zhang W, Dunkle JA, Cate JH. Structures of the ribosome in intermediate states of ratcheting. Science. 2009;325:1014–1017.
  • Ratje AH, Loerke J, Mikolajka A, et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature. 2010;468(7324):713–716. DOI:10.1038/nature09547.
  • Guo Z, Noller HF. Rotation of the head of the 30S ribosomal subunit during mRNA translocation. Proc Natl Acad Sci U S A. 2012;109(50):20391–20394.
  • Zhou J, Lancaster L, Donohue JP, et al. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science. 2014;345:1188–1191.
  • Frank J, Agrawal RK. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature. 2000;406:318–322.
  • Fu Z, Indrisiunaite G, Kaledhonkar S, et al. The structural basis for release-factor activation during translation termination revealed by time-resolved cryogenic electron microscopy. Nat Commun. 2019;10(1):2579. DOI:10.1038/s41467-019-10608-z.
  • Korostelev A, Zhu J, Asahara H, et al. Recognition of the amber UAG stop codon by release factor RF1. EMBO J. 2010;29(15):2577–2585.
  • Weixlbaumer A, Jin H, Neubauer C, et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science. 2008;322(5903):953–956. DOI:10.1126/science.1164840.
  • Laurberg M, Asahara H, Korostelev A, et al. Structural basis for translation termination on the 70S ribosome. Nature. 2008;454(7206):852–857.
  • Korostelev A, Asahara H, Lancaster L, et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci U S A. 2008;105(50):19684–19689. DOI:10.1073/pnas.0810953105.
  • Petry S, Brodersen DE, FVt M, et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell. 2005;123:1255–1266.
  • Pallesen J, Hashem Y, Korkmaz G, et al. Cryo-EM visualization of the ribosome in termination complex with apo-RF3 and RF1. Elife. 2013;2:e00411.
  • Zhou J, Lancaster L, Trakhanov S, et al. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA. 2012;18:230–240.
  • Jin H, Kelley AC, Ramakrishnan V. Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc Natl Acad Sci U S A. 2011;108(38):15798–15803.
  • Fu Z, Kaledhonkar S, Borg A, et al. Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure. 2016;24(12):2092–2101. DOI:10.1016/j.str.2016.09.014.
  • Pai RD, Zhang W, Schuwirth BS, et al. Structural Insights into ribosome recycling factor interactions with the 70S ribosome. J Mol Biol. 2008;376(5):1334–1347. DOI:10.1016/j.jmb.2007.12.048.
  • Weixlbaumer A, Petry S, Dunham CM, et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat Struct Mol Biol. 2007;14(8):733–737.
  • Borovinskaya MA, Pai RD, Zhang W, et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol. 2007;14(8):727–732. DOI:10.1038/nsmb1271.
  • Janosi L, Mottagui-Tabar S, Isaksson LA, et al. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 1998;17:1141–1151.
  • Janosi L, Shimizu I, Kaji A. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proc Natl Acad Sci U S A. 1994;91:4249–4253.
  • Pavlov MY, Freistroffer DV, Heurgue-Hamard V, et al. Release factor RF3 abolishes competition between release factor RF1 and ribosome recycling factor (RRF) for a ribosome binding site. J Mol Biol. 1997;273(2):389–401.
  • Kim KK, Min K, Suh SW. Crystal structure of the ribosome recycling factor from Escherichia coli. EMBO J. 2000;19(10):2362–2370.
  • Selmer M, Al-Karadaghi S, Hirokawa G, et al. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science. 1999;286:2349–2352.
  • Toyoda T, Tin OF, Ito K, et al. Crystal structure combined with genetic analysis of the Thermus thermophilus ribosome recycling factor shows that a flexible hinge may act as a functional switch. RNA. 2000;6(10):1432–1444. DOI:10.1017/S1355838200001060.
  • Yoshida T, Uchiyama S, Nakano H, et al. Solution Structure of the Ribosome Recycling Factor from Aquifex aeolicus. Biochemistry. 2001;40(8):2387–2396. DOI:10.1021/bi002474g.
  • Lancaster L, Kiel MC, Kaji A, et al. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell. 2002;111(1):129–140.
  • Guo P, Zhang L, Zhang H, et al. Domain II plays a crucial role in the function of ribosome recycling factor. Biochem J. 2006;393(3):767–777.
  • Agrawal RK, Sharma MR, Kiel MC, et al. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Proc Natl Acad Sci U S A. 2004;101:8900–8905.
  • Ali IK, Lancaster L, Feinberg J, et al. Deletion of a conserved, central ribosomal intersubunit RNA bridge. Mol Cell. 2006;23(6):865–874.
  • Wilson DN, Schluenzen F, Harms JM, et al. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 2005;24(2):251–260. DOI:10.1038/sj.emboj.7600525.
  • Hirokawa G, Kiel MC, Muto A, et al. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J. 2002;21:2272–2281.
  • Hirokawa G, Kiel MC, Muto A, et al. Binding of ribosome recycling factor to ribosomes, comparison with tRNA. J Biol Chem. 2002;277(39):35847–35852. DOI:10.1074/jbc.M206295200.
  • Kiel MC, Raj VS, Kaji H, et al. Release of ribosome-bound ribosome recycling factor by elongation factor G. J Biol Chem. 2003;278:48041–48050.
  • Cornish PV, Ermolenko DN, Noller HF, et al. Spontaneous intersubunit rotation in single ribosomes. Mol Cell. 2008;30:578–588.
  • Frank J, Gao H, Sengupta J, et al. The process of mRNA-tRNA translocation. Proc Natl Acad Sci U S A. 2007;104:19671–19678.
  • Zhou J, Lancaster L, Donohue JP, et al. Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state. Proc Natl Acad Sci U S A. 2019;116(16):7813–7818.
  • Gao N, Zavialov AV, Li W, et al. Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol Cell. 2005;18(6):663–674. DOI:10.1016/j.molcel.2005.05.005.
  • Sternberg SH, Fei J, Prywes N, et al. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat Struct Mol Biol. 2009;16(8):861–868.
  • Prabhakar A, Capece MC, Petrov A, et al. Post-termination ribosome intermediate acts as the gateway to ribosome recycling. Cell Rep. 2017;20(1):161–172.
  • Valle M, Zavialov A, Sengupta J, et al. Locking and unlocking of ribosomal motions. Cell. 2003;114(1):123–134.
  • Dunkle JA, Wang L, Feldman MB, et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science. 2011;332(6032):981–984. DOI:10.1126/science.1202692.
  • Pavlov MY, Antoun A, Lovmar M, et al. Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting. EMBO J. 2008;27(12):1706–1717.
  • Karimi R, Pavlov MY, Buckingham RH, et al. Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell. 1999;3(5):601–609.
  • Zavialov AV, Hauryliuk VV, Ehrenberg M. Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol Cell. 2005;18(6):675–686.
  • Barat C, Datta PP, Raj VS, et al. Progression of the ribosome recycling factor through the ribosome dissociates the two ribosomal subunits. Mol Cell. 2007;27(2):250–261. DOI:10.1016/j.molcel.2007.06.005.
  • Borg A, Pavlov M, Ehrenberg M. Complete kinetic mechanism for recycling of the bacterial ribosome. RNA. 2016;22(1):10–21.
  • Zhou D, Tanzawa T, Lin J, et al. Structural basis for ribosome recycling by RRF and tRNA. Nat Struct Mol Biol. 2020;27(1):25–32.
  • Gagnon MG, Seetharaman SV, Bulkley D, et al. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science. 2012;335(6074):1370–1372.
  • Polikanov YS, Steitz TA, Innis CA. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat Struct Mol Biol. 2014;21(9):787–793.
  • Polikanov YS, Blaha GM, Steitz TA. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science. 2012;336(6083):915–918.
  • Kim LY, Rice WJ, Eng ET, et al. Benchmarking cryo-EM single particle analysis workflow. Front Mol Biosci. 2018;5:50.
  • Rivera-Calzada A, Carroni M. Editorial: technical advances in cryo-electron microscopy. Front Mol Biosci. 2019;6:72.
  • Frank J. Time-resolved cryo-electron microscopy: recent progress. J Struct Biol. 2017;200(3):303–306.
  • Yokoyama T, Shaikh TR, Iwakura N, et al. Structural insights into initial and intermediate steps of the ribosome-recycling process. EMBO J. 2012;31(7):1836–1846.
  • Ito K, Fujiwara T, Toyoda T, et al. Elongation factor G participates in ribosome disassembly by interacting with ribosome recycling factor at their tRNA-mimicry domains. Mol Cell. 2002;9(6):1263–1272.
  • Fujiwara T, Ito K, Nakayashiki T, et al. Amber mutations in ribosome recycling factors of Escherichia coli and Thermus thermophilus: evidence for C-terminal modulator element. FEBS Lett. 1999;447:297–302.
  • Fujiwara T, Ito K, Yamami T, et al. Ribosome recycling factor disassembles the post-termination ribosomal complex independent of the ribosomal translocase activity of elongation factor G. Mol Microbiol. 2004;53(2):517–528.
  • Peske F, Rodnina MV, Wintermeyer W. Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell. 2005;18(4):403–412.
  • Gao N, Zavialov AV, Ehrenberg M, et al. Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J Mol Biol. 2007;374(5):1345–1358.
  • Demo G, Gamper HB, Loveland AB, et al. Structural basis for +1 ribosomal frameshifting during EF-G-catalyzed translocation. Nat Commun. 2021;12(1):4644. DOI:10.1038/s41467-021-24911-1.
  • Margus T, Remm M, Tenson T. A computational study of elongation factor G (EFG) duplicated genes: diverged nature underlying the innovation on the same structural template. PLoS One. 2011;6(8):e22789.
  • Margus T, Remm M, Tenson T. Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics. 2007;8(1):15.
  • Connell SR, Takemoto C, Wilson DN, et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol Cell. 2007;25(5):751–764. DOI:10.1016/j.molcel.2007.01.027.
  • Seshadri A, Samhita L, Gaur R, et al. Analysis of the fusA2 locus encoding EFG2 in Mycobacterium smegmatis. Tuberculosis (Edinb). 2009;89(6):453–464.
  • Palmer SO, Rangel EY, Hu Y, et al. Two homologous EF-G proteins from Pseudomonas aeruginosa exhibit distinct functions. PLoS One. 2013;8(11):e80252.
  • Suematsu T, Yokobori S, Morita H, et al. A bacterial elongation factor G homologue exclusively functions in ribosome recycling in the spirochaete Borrelia burgdorferi. Mol Microbiol. 2010;75:1445–1454.
  • Park JH, Jensen BC, Kifer CT, et al. A novel nucleolar G-protein conserved in eukaryotes. J Cell Sci. 2001;114(1):173–185.
  • Jain N, Dhimole N, Khan AR, et al. E. coli HflX interacts with 50S ribosomal subunits in presence of nucleotides. Biochem Biophys Res Commun. 2009;379(2):201–205. DOI:10.1016/j.bbrc.2008.12.072.
  • Blombach F, Launay H, Zorraquino V, et al. An HflX-type GTPase from Sulfolobus solfataricus binds to the 50S ribosomal subunit in all nucleotide-bound states. J Bacteriol. 2011;193(11):2861–2867. DOI:10.1128/JB.01552-10.
  • Fischer JJ, Coatham ML, Bear SE, et al. The ribosome modulates the structural dynamics of the conserved GTPase HflX and triggers tight nucleotide binding. Biochimie. 2012;94(8):1647–1659. DOI:10.1016/j.biochi.2012.04.016.
  • Shields MJ, Fischer JJ, Wieden HJ. Toward understanding the function of the universally conserved GTPase HflX from Escherichia coli: a kinetic approach. Biochemistry. 2009;48:10793–10802.
  • Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006 0008.
  • Tsui HC, Feng G, Winkler ME. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock. J Bacteriol. 1996;178(19):5719–5731.
  • Tsui HC, Leung HC, Winkler ME. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol. 1994;13:35–49.
  • Shalgi R, Hurt JA, Krykbaeva I, et al. Widespread regulation of translation by elongation pausing in heat shock. Mol Cell. 2013;49(3):439–452.
  • Zhang Y, Mandava CS, Cao W, et al. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions. Nat Struct Mol Biol. 2015;22(11):906–913. DOI:10.1038/nsmb.3103.
  • Coatham ML, Brandon HE, Fischer JJ, et al. The conserved GTPase HflX is a ribosome splitting factor that binds to the E-site of the bacterial ribosome. Nucleic Acids Res. 2016;44:1952–1961.
  • Hurst-Hess KR, Rudra P, Ghosh P. Ribosome protection as a mechanism of lincosamide resistance in mycobacterium abscessus. Antimicrob Agents Chemother. 2021;65(11):e0118421.
  • Rudra P, Hurst-Hess KR, Cotten KL, et al. Mycobacterial HflX is a ribosome splitting factor that mediates antibiotic resistance. Proc Natl Acad Sci U S A. 2020;117(1):629–634.
  • Burian J, Ramon-Garcia S, Howes CG, et al. WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis. Expert Rev Anti Infect Ther. 2012;10:1037–1047.
  • Burian J, Thompson CJ. Regulatory genes coordinating antibiotic-induced changes in promoter activity and early transcriptional termination of the mycobacterial intrinsic resistance gene whiB7. Mol Microbiol. 2018;107:402–415.
  • Duval M, Dar D, Carvalho F, et al. HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. Proc Natl Acad Sci U S A. 2018;115:13359–13364.
  • Pel HJ, Grivell LA. Protein synthesis in mitochondria. Mol Biol Rep. 1994;19(3):183–194.
  • Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science. 1999;283(5407):1476–1481.
  • Ferrari A, Del’Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett. 2021;595(8):1025–1061.
  • Schon EA. Mitochondrial genetics and disease. Trends Biochem Sci. 2000;25(11):555–560.
  • Greber BJ, Ban N. Structure and function of the mitochondrial ribosome. Annu Rev Biochem. 2016;85(1):103–132.
  • Sharma MR, Koc EC, Datta PP, et al. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell. 2003;115(1):97–108.
  • Amunts A, Brown A, Bai XC, et al. Structure of the yeast mitochondrial large ribosomal subunit. Science. 2014;343:1485–1489.
  • Desai N, Brown A, Amunts A, et al. The structure of the yeast mitochondrial ribosome. Science. 2017;355(6324):528–531.
  • Amunts A, Brown A, Toots J, et al. The structure of the human mitochondrial ribosome. Science. 2015;348:95–98.
  • Greber BJ, Bieri P, Leibundgut M, et al. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science. 2015;348:303–308.
  • Ott M, Amunts A, Brown A. Organization and Regulation of Mitochondrial Protein Synthesis. Annu Rev Biochem. 2016;85(1):77–101.
  • van der Sluis EO, Bauerschmitt H, Becker T, et al. Parallel structural evolution of mitochondrial ribosomes and OXPHOS complexes. Genome Biol Evol. 2015;7(5):1235–1251. DOI:10.1093/gbe/evv061.
  • Rorbach J, Richter R, Wessels HJ, et al. The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Res. 2008;36(18):5787–5799. DOI:10.1093/nar/gkn576.
  • Zhang Y, Spremulli LL. Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor. Biochim Biophys Acta. 1998;1443(1–2):245–250.
  • Koripella RK, Sharma MR, Risteff P, et al. Structural insights into unique features of the human mitochondrial ribosome recycling. Proc Natl Acad Sci U S A. 2019;116(17):8283–8288.
  • Aibara S, Singh V, Modelska A, et al. Structural basis of mitochondrial translation. Elife. 2020;9. DOI:10.7554/eLife.58362
  • Tsuboi M, Morita H, Nozaki Y, et al. EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol Cell. 2009;35(4):502–510. DOI:10.1016/j.molcel.2009.06.028.
  • Koripella RK, Deep A, Agrawal EK, et al. Distinct mechanisms of the human mitoribosome recycling and antibiotic resistance. Nat Commun. 2021;12:3607.
  • Kummer E, Schubert KN, Schoenhut T, et al. Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. Mol Cell. 2021;81(12):2566–2582.
  • Koripella RK, Sharma MR, Bhargava K, et al. Structures of the human mitochondrial ribosome bound to EF-G1 reveal distinct features of mitochondrial translation elongation. Nat Commun. 2020;11:3830.
  • Kummer E, Ban N. Structural insights into mammalian mitochondrial translation elongation catalyzed by mtEFG1. EMBO J. 2020;39:e104820.
  • Ostojic J, Panozzo C, Bourand-Plantefol A, et al. Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria. Nucleic Acids Res. 2016;44(12):5785–5797.
  • Teyssier E, Hirokawa G, Tretiakova A, et al. Temperature-sensitive mutation in yeast mitochondrial ribosome recycling factor (RRF). Nucleic Acids Res. 2003;31:4218–4226.
  • Callegari S, McKinnon RA, Andrews S, et al. The MEF2 gene is essential for yeast longevity, with a dual role in cell respiration and maintenance of mitochondrial membrane potential. FEBS Lett. 2011;585:1140–1146.
  • Fontanesi F. Mechanisms of mitochondrial translational regulation. IUBMB Life. 2013;65(5):397–408.
  • Maiti P, Kim HJ, Tu YT, et al. Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res. 2018;46:11423–11437.
  • Britton RA. Role of GTPases in bacterial ribosome assembly. Annu Rev Microbiol. 2009;63(1):155–176.
  • Kim HJ, Barrientos A. MTG1 couples mitoribosome large subunit assembly with intersubunit bridge formation. Nucleic Acids Res. 2018;46:8435–8453.
  • Lavdovskaia E, Kolander E, Steube E, et al. The human Obg protein GTPBP10 is involved in mitoribosomal biogenesis. Nucleic Acids Res. 2018;46:8471–8482.
  • Metodiev MD, Spahr H, Loguercio Polosa P, et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 2014;10(2):e1004110. DOI:10.1371/journal.pgen.1004110.
  • Lavdovskaia E, Denks K, Nadler F, et al. Dual function of GTPBP6 in biogenesis and recycling of human mitochondrial ribosomes. Nucleic Acids Res. 2020;48(22):12929–12942. DOI:10.1093/nar/gkaa1132.
  • Hillen HS, Lavdovskaia E, Nadler F, et al. Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat Commun. 2021;12(1):3672. DOI:10.1038/s41467-021-23702-y.
  • Svetlov MS, Plessa E, Chen CW, et al. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. RNA. 2019;25:600–606.