2,134
Views
5
CrossRef citations to date
0
Altmetric
Review

The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function

, , & ORCID Icon
Pages 735-750 | Received 21 Mar 2022, Accepted 11 May 2022, Published online: 30 May 2022

References

  • Grosjean H. Nucleic acids are not boring long polymers of only four types of nucleotides: a guided tour. DNA and RNA modification enzymes: structure, mechanism, function and evolution. Landes Bioscience. 2009: 1–18.
  • Lorenz C, Lunse CE, Morl M. tRNA modifications: impact on structure and thermal adaptation. Biomolecules. 2017;71:35.
  • Sloan KE, Warda AS, Sharma S, et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 2017;14:1138–1152.
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71:3971–3975.
  • Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022;50:D231–D235.
  • Helm M, Schmidt-Dengler MC, Weber M, et al. General principles for the detection of modified nucleotides in rna by specific reagents. 2021;Adv Biol (Weinh). 5:e2100866. 10.1002/adbi.202100866
  • Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–1200.
  • Green M, Cohen SS. Studies on the biosynthesis of bacterial and viral pyrimidines. II. Dihydrouracil and dihydrothymine nucleosides. J Biol Chem. 1957;225:397–407.
  • Ehrlich A, Funk C, Merritt AJ. The isolation of hydrouracil from beef spleen. Arch Biochem Biophys. 1952;35:468–469.
  • Carr DO, Grisolia S. Incorporation of Dihydrouridine monophosphate and uridine monophosphate into liver and brain ribonucleic acid. J Biol Chem. 1964;239:160–166.
  • Royburman P, Royburman S, Visser DW. Incorporation of 5,6-dihydrouridine triphosphate into ribonucleic acid by DNA-dependent RNA polymerase. Biochem Biophys Res Commun. 1965;20:291–297.
  • Holley RW, Apgar J, Everett GA, et al. Structure of a ribonucleic acid. Science. 1965;147:1462–1465.
  • Madison JT, Holley RW. The presence of 5,6-Dihydrouridylic acid in yeast “soluble” ribonucleic acid. Biochem Biophys Res Commun. 1965;18:153–157.
  • Davis DR. Biophysical and conformational properties of modified nucleotides in RNA. modification and editing of RNA. Washington (DC): American Society for Microbiology Press; 1998. p. 85–102.
  • Dyubankova N, Sochacka E, Kraszewska K, et al. Contribution of dihydrouridine in folding of the D-arm in tRNA. Org Biomol Chem. 2015;13:4960–4966.
  • Kwok CK. Dawn of the in vivo RNA structurome and interactome. Biochem Soc Trans. 2016;44:1395–1410.
  • Kwok CK, Tang Y, Assmann SM, et al. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem Sci. 2015;40:221–232.
  • Kligun E, Mandel-Gutfreund Y. The role of RNA conformation in RNA-protein recognition. RNA Biol. 2015;12:720–727.
  • Batt RD, J.k M, J.m P, et al. Chemistry of dihydropyrimidines. Ultraviolet spectra and alkaline decomposition. J Am Chem Soc. 1954;76:3663–3665.
  • Cerutti P, Miller N. Selective reduction of yeast transfer ribonucleic acid with sodium borohydride. J Mol Biol. 1967;26:55–66.
  • Igo-Kemenes T, Zachau HG. On the specificity of the reduction of transfer ribonucleic acids with sodium borohydride. Eur J Biochem. 1969;10:549–556.
  • Jacobson M, Hedgcoth C. Determination of 5,6-dihydrouridine in ribonucleic acid. Anal Biochem. 1970;34:459–469.
  • Betteridge T, Liu H, Gamper H, et al. Fluorescent labeling of tRNAs for dynamics experiments. RNA. 2007;13:1594–1601.
  • Cerutti P, Holt JW, Miller N. Detection and determination of 5,6-dihydrouridine and 4-thiouridine in transfer ribonucleic acid from different sources. J Mol Biol. 1968a;34:505–518.
  • Cerutti P, Kondo Y, Landis WR, et al. Photoreduction of uridine and reduction of dihydrouridine with sodium borohydride. J Am Chem Soc. 1968b;90:771–775.
  • Cohn WE, Doherty DG. The catalytic hydrogenation of pyrimidine nucleosides and nucleotides and the isolation of their ribose and respective ribose phosphates. J Am Chem Soc. 1955;78:2863–2866.
  • Pan D, Qin H, Cooperman BS. Synthesis and functional activity of tRNAs labeled with fluorescent hydrazides in the D-loop. RNA. 2009;15:346–354.
  • Wintermeyer W, Schleich HG, Zachau HG. Incorporation of amines or hydrazines into tRNA replacing wybutine or dihydrouracil. Methods Enzymol. 1979;59:110–121.
  • Wintermeyer W, Zachau HG. Replacement of Y base, dihydrouracil, and 7-methylguanine in tRNA by artificial odd bases. FEBS Lett. 1971;18:214–218.
  • Wintermeyer W, Zachau HG. Replacement of odd bases in tRNA by fluorescent dyes. Methods Enzymol. 1974;29:667–673.
  • House CH, Miller SL. Hydrolysis of dihydrouridine and related compounds. Biochemistry. 1996;35:315–320.
  • Magrath DI, Shaw DC. The occurrence and source of beta-alanine in alkaline hydrolysates of sRNA: a sensitive method for the detection and assay of 5,6-dihydrouracil residues in RNA. Biochem Biophys Res Commun. 1967;26:32–37.
  • Xing F, Hiley SL, Hughes TR, et al. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. J Biol Chem. 2004;279:17850–17860.
  • Beltchev B, Grunberg-Manago M. Preparation of a pG-fragment from tRNA(Phe)(yeast) by chemical scission at the dihydrouracil, and inhibition of tRNA(Phe)(yeast) charging by this fragment when combined with the -CCA half of this tRNA. FEBS Lett. 1970;12:24–26.
  • Wintermeyer W, Zachau HG. A specific chemical chain scission of tRNA at 7-methylguanosine. FEBS Lett. 1970;11:160–164.
  • Randerath K, Gupta RC, Randerath E. 3H and 32P derivative methods for base composition and sequence analysis of RNA. Methods Enzymol. 1980;65:638–680.
  • Pomerantz S, McCloskey J. Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry. In: McCloskey JA, editor. Methods enzymol. Academic Press, Inc; 1990. p. 796–824.
  • Topp H, Duden R, Schoch G. 5,6-Dihydrouridine: a marker ribonucleoside for determining whole body degradation rates of transfer RNA in man and rats. Clin Chim Acta. 1993;218:73–82.
  • Cerutti P, Miles HT, Frazier J. Interaction of partially reduced polyuridylic acid with polyadenylic acid. Biochem Biophys Res Commun. 1966;22:466–472.
  • Motorin Y, Muller S, Behm-Ansmant I, et al. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol. 2007;425:21–53.
  • Hiley SL, Jackman J, Babak T, et al. Detection and discovery of RNA modifications using microarrays. Nucleic Acids Res. 2005;33:e2.
  • Kaur J, Raj M, Cooperman BS. Fluorescent labeling of tRNA dihydrouridine residues: mechanism and distribution. RNA. 2011;17:1393–1400.
  • Machnicka MA, Olchowik A, Grosjean H, et al. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol. 2014;11:1619–1629.
  • Grosjean H, Houssier C, Romby P, et al. Modulation role of modified nucleotides in RNA loop-loop interaction. Washington (DC): American Society for Microbiology Press; 1998. p. 113–134.
  • Vare VY, Eruysal ER, Narendran A, et al. Chemical and conformational diversity of modified nucleosides affects tRNA structure and function. Biomolecules. 2017;7 (1):29.
  • Chawla M, Oliva R, Bujnicki JM, et al. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res. 2015;43:6714–6729.
  • Seelam PP, Sharma P, Mitra A. Structural landscape of base pairs containing post-transcriptional modifications in RNA. RNA. 2017;23:847–859.
  • Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016;44:D1251–1257.
  • Suzuki T, Suzuki T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res. 2014;42:7346–7357.
  • Arcari P, Brownlee GG. The nucleotide sequence of a small (3S) seryl-tRNA (anticodon GCU) from beef heart mitochondria. Nucleic Acids Res. 1980;8:5207–5212.
  • de Bruijn MH, Schreier PH, Eperon IC, et al. A mammalian mitochondrial serine transfer RNA lacking the “dihydrouridine” loop and stem. Nucleic Acids Res. 1980;8:5213–5222.
  • de Bruijn MH, Klug A. A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire ‘dihydrouridine’ loop and stem. EMBO J. 1983;2:1309–1321.
  • Jones CI, Spencer AC, Hsu JL, et al. A counterintuitive Mg2+-dependent and modification-assisted functional folding of mitochondrial tRNAs. J Mol Biol. 2006;362:771–786.
  • Xing F, Martzen MR, Phizicky EM. A conserved family of saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA. 2002;8:370–381.
  • Huang RC, Bonner J. Histone-bound RNA, a component of native nucleohistone. Proc Natl Acad Sci U S A. 1965;54:960–967.
  • Shih TY, Bonner J. Chromosomal RNA of calf thymus chromatin. Biochim Biophys Acta. 1969;182:30–35.
  • Krol A, Gallinaro H, Lazar E, et al. The nuclear 5S RNAs from chicken, rat and man. U5 RNAs are encoded by multiple genes. Nucleic Acids Res. 1981;9:769–787.
  • Johnson JD, Horowitz J. Characterization of ribosomes and RNAs from mycoplasma hominis. Biochim Biophys Acta. 1971;247:262–279.
  • Kirpekar F, Hansen LH, Mundus J, et al. Mapping of ribosomal 23S ribosomal RNA modifications in Clostridium sporogenes. RNA Biol. 2018;15:1060–1070.
  • Kowalak JA, Bruenger E, McCloskey JA. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23S ribosomal RNA. J Biol Chem. 1995;270:17758–17764.
  • Popova AM, Williamson JR. Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. J Am Chem Soc. 2014;136:2058–2069.
  • O’Connor M, Lee WM, Mankad A, et al. Mutagenesis of the peptidyltransferase center of 23S rRNA: the invariant U2449 is dispensable. Nucleic Acids Res. 2001;29:710–715.
  • Emmerechts G, Barbe S, Herdewijn P, et al. Post-transcriptional modification mapping in the Clostridium acetobutylicum 16S rRNA by mass spectrometry and reverse transcriptase assays. Nucleic Acids Res. 2007;35:3494–3503.
  • Chen X, Sim S, Wurtmann EJ, et al. Bacterial noncoding Y RNAs are widespread and mimic tRNAs. RNA. 2014;20:1715–1724.
  • Bishop AC, Xu J, Johnson RC, et al. Identification of the tRNA-dihydrouridine synthase family. J Biol Chem. 2002;277:25090–25095.
  • Bou-Nader C, Montemont H, Guerineau V, et al. Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario. Nucleic Acids Res. 2018b;46:1386–1394.
  • Faivre B, Lombard M, Fakroun S, et al. Dihydrouridine synthesis in tRNAs is under reductive evolution in mollicutes. RNA Biol. 2021;18:2278–2289.
  • Kuchino Y, Borek E. Tumour-specific phenylalanine tRNA contains two supernumerary methylated bases. Nature. 1978;271:126–129.
  • Jiang HP, Chu JM, Lan MD, et al. Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid-phase microextraction - mass spectrometry analysis. J Chromatogr A. 2016;1462:90–99.
  • Reimer ML, Schram KH, Nakano K, et al. The identification of 5,6-dihydrouridine in normal human urine by combined gas chromatography/mass spectrometry. Anal Biochem. 1989;181:302–308.
  • Borek E, Baliga BS, Gehrke CW, et al. High turnover rate of transfer RNA in tumor tissue. Cancer Res. 1977;37:3362–3366.
  • Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom Rev. 2014;33:302–331.
  • Sridharan G, Ramani P, Patankar S. Serum metabolomics in oral leukoplakia and oral squamous cell carcinoma. J Cancer Res Ther. 2017;13:556–561.
  • Licha D, Vidali S, Aminzadeh-Gohari S, et al. Untargeted metabolomics reveals molecular effects of ketogenic diet on healthy and tumor xenograft mouse models. Int J Mol Sci. 2019;20(16):3873.
  • Huang J, Mondul AM, Weinstein SJ, et al. Prospective serum metabolomic profiling of lethal prostate cancer. Int J Cancer. 2019;145:3231–3243.
  • Mittelstadt M, Frump A, Khuu T, et al. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Res. 2008;36:998–1008.
  • Luo X, Wang CZ, Chen J, et al. Characterization of gene expression regulated by American ginseng and ginsenoside Rg3 in human colorectal cancer cells. Int J Oncol. 2008;32:975–983.
  • Kato T, Daigo Y, Hayama S, et al. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res. 2005;65:5638–5646.
  • Cancer genome atlas research N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–49.
  • Cancer genome atlas research N, Linehan WM, Spellman PT, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016;374:135–145.
  • Buchser WJ, Smith RP, Pardinas JR, et al. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates. PLoS One. 2012;7:e38101.
  • Basanta-Sanchez M, Temple S, Ansari SA, et al. Attomole quantification and global profile of RNA modifications: epitranscriptome of human neural stem cells. Nucleic Acids Res. 2016;44:e26.
  • Dalluge JJ, Hamamoto T, Horikoshi K, et al. Posttranscriptional modification of tRNA in psychrophilic bacteria. J Bacteriol. 1997;179:1918–1923.
  • Dalluge JJ, Hashizume T, Sopchik AE, et al. Conformational flexibility in RNA: the role of dihydrouridine. Nucleic Acids Res. 1996b;24:1073–1079.
  • Deslauriers R, Lapper RD, Smith IC. A proton magnetic resonance study of the molecular conformation of a modified nucleoside from transfer RNA. Dihydrouridine. Can J Biochem. 1971;49:1279–1284.
  • Kusuba H, Yoshida T, Iwasaki E, et al. In vitro dihydrouridine formation by tRNA dihydrouridine synthase from thermus thermophilus, an extreme-thermophilic eubacterium. J Biochem. 2015;158:513–521.
  • Liang WD, Bi YT, Wang HY, et al. Gene expression profiling of Clostridium botulinum under heat shock stress. Biomed Res Int. 2013;2013:760904.
  • Sun QL, Sun YY, Zhang J, et al. High temperature-induced proteomic and metabolomic profiles of a thermophilic bacillus manusensis isolated from the deep-sea hydrothermal field of manus basin. J Proteomics. 2019;203:103380.
  • Noon KR, Guymon R, Crain PF, et al. Influence of temperature on tRNA modification in archaea: methanococcoides burtonii (optimum growth temperature [Topt], 23 degrees C) and Stetteria hydrogenophila (Topt, 95 degrees C). J Bacteriol. 2003;185:5483–5490.
  • Wang H, Simpson JH, Kotra ME, et al. Epitranscriptomic profile of Lactobacillus agilis and its adaptation to growth on inulin. BMC Res Notes. 2021;14:154.
  • Lombard M, Hamdane D. Flavin-dependent epitranscriptomic world. Arch Biochem Biophys. 2017;632:28–40.
  • Rider LW, Ottosen MB, Gattis SG, et al. Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction. J Biol Chem. 2009;284:10324–10333.
  • Yu F, Tanaka Y, Yamashita K, et al. Molecular basis of dihydrouridine formation on tRNA. Proc Natl Acad Sci U S A. 2011;108:19593–19598.
  • Kasprzak JM, Czerwoniec A, Bujnicki JM. Molecular evolution of dihydrouridine synthases. BMC Bioinformatics. 2012;13:153.
  • Savage DF, de Crecy-Lagard V, Bishop AC. Molecular determinants of dihydrouridine synthase activity. FEBS Lett. 2006;580:5198–5202.
  • Park F, Gajiwala K, Noland B, et al. The 1.59 A resolution crystal structure of TM0096, a flavin mononucleotide binding protein from Thermotoga maritima. Proteins. 2004;55:772–774.
  • Byrne RT, Jenkins HT, Peters DT, et al. Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proc Natl Acad Sci U S A. 2015;112:6033–6037.
  • Chen M, Yu J, Tanaka Y, et al. Structure of dihydrouridine synthase C (DusC) from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013;69:834–838.
  • Goyal N, Chandra A, Qamar I, et al. Structural studies on dihydrouridine synthase A (DusA) from Pseudomonas aeruginosa. Int J Biol Macromol. 2019;132:254–264.
  • Griffiths S, Byrne RT, Antson AA, et al. Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of human dihydrouridine synthase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012;68:333–336.
  • Bou-Nader C, Pecqueur L, Bregeon D, et al. An extended dsRBD is required for post-transcriptional modification in human tRNAs. Nucleic Acids Res. 2015;43:9446–9456.
  • Bou-Nader C, Barraud P, Pecqueur L, et al. Molecular basis for transfer RNA recognition by the double-stranded RNA-binding domain of human dihydrouridine synthase 2. Nucleic Acids Res. 2019a;47:3117–3126.
  • Bou-Nader C, Bregeon D, Pecqueur L, et al. Electrostatic potential in the trna binding evolution of Dihydrouridine synthases. Biochemistry. 2018a;57:5407–5414.
  • Marchand V, Ayadi L, Ernst FGM, et al. AlkAniline-seq: profiling of m(7) G and m(3) C RNA modifications at single nucleotide resolution. Angew Chem Int Ed Engl. 2018;57:16785–16790.
  • Marchand V, Bourguignon-Igel V, Helm M, et al. Mapping of 7-methylguanosine (m(7)G), 3-methylcytidine (m(3)C), dihydrouridine (D) and 5-hydroxycytidine (ho(5)C) RNA modifications by AlkAniline-Seq. Methods Enzymol. 2021;658:25–47.
  • Dai W, Li A, Yu NJ, et al. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat Chem Biol. 2021;17:1178–1187.
  • Liao Y, Castello A, Fischer B, et al. The Cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep. 2016;16:1456–1469.
  • Finet O, Yague-Sanz C, Kruger LK, et al. Transcription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregation. Mol Cell. 2022b;82:404–419 e409.
  • Finet O, Yague-Sanz C, Hermand D Epitranscriptomic mapping of RNA modifications at single-nucleotide resolution using rhodamine sequencing (Rho-seq). STAR Protoc. 2022;3(2):101369 . DOI:10.1016/j.xpro.2022.101369
  • Beckmann BM, Horos R, Fischer B, et al. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun. 2015;6:10127.
  • Mitchell SF, Jain S, She M, et al. Global analysis of yeast mRNPs. Nat Struct Mol Biol. 2013;20:127–133.
  • Dou L, Zhou W, Zhang L, et al. Accurate identification of RNA D modification using multiple features. RNA Biol. 2021;18:2236–2246.
  • Feng P, Xu Z, Yang H, et al. Identification of D modification sites by integrating heterogeneous features in saccharomyces cerevisiae. Molecules. 2019;24(3):380.
  • Salekin S, Mostavi M, Chiu YC, et al. Predicting sites of epitranscriptome modifications using unsupervised representation learning based on generative adversarial networks. Front Phys. 2020;8. DOI:10.3389/fphy.2020.00196
  • Xu ZC, Feng PM, Yang H, et al. iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics. 2019;35:4922–4929.
  • Thomas NK, Poodari VC, Jain M, et al. Direct nanopore sequencing of individual full length tRNA strands. ACS Nano. 2021;15:16642–16653.
  • Schwartz S, Agarwala SD, Mumbach MR, et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell. 2013;155:1409–1421.
  • Schwartz S, Bernstein DA, Mumbach MR, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159:148–162.
  • Rottman F, Cerutti P. Template activity of uridylic acid-dihydrouridylic acid copolymers. Proc Natl Acad Sci U S A. 1966;55:960–966.
  • Smrt J, Skoda J, Lisy V, et al. Loss of coding properties of the trinucleotide guanylyl-uridylyl-uridine on replacement of uridylic by dihydrouridylic acid. Biochim Biophys Acta. 1966;129:210–211.
  • Lee S, Brown GL, Kosinski Z. Loss of coding properties of the oligonucleotide adenylyluridylylguanosine after photoreduction or hydration. Biochem J. 1967;103:25C–27C.
  • Smrt J, Kemper W, Caskey T, et al. Template activity of modified terminator codons. J Biol Chem. 1970;245:2753–2757.
  • Vallin J, Grantham J. The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: implications for cancer cell biology. Cell Stress Chaperones. 2019;24:17–27.
  • Chen X, Ji B, Hao X, et al. FMN reduces Amyloid-beta toxicity in yeast by regulating redox status and cellular metabolism. Nat Commun. 2020;11:867.
  • Hidese R, Mihara H, Kurihara T, et al. Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil. J Bacteriol. 2011;193:989–993.
  • Schnackerz KD, Dobritzsch D, Lindqvist Y, et al. Dihydropyrimidine dehydrogenase: a flavoprotein with four iron-sulfur clusters. Biochim Biophys Acta. 2004;1701:61–74.
  • Vandivier LE, Campos R, Kuksa PP, et al. Chemical modifications mark alternatively spliced and Uncapped messenger RNAs in arabidopsis. Plant Cell. 2015;27:3024–3037.
  • Chen P, Jager G, Zheng B. Transfer RNA modifications and genes for modifying enzymes in arabidopsis thaliana. BMC Plant Biol. 2010;10:201.
  • Krog JS, Espanol Y, Giessing AM, et al. 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei. FEBS J. 2011;278:4782–4796.
  • Bou-Nader C, Pecqueur L, Barraud P, et al. Conformational stability adaptation of a double-stranded rna-binding domain to transfer RNA ligand. Biochemistry. 2019b;58:2463–2473.
  • Guimaraes BG, Golinelli-Pimpaneau B. De novo crystal structure determination of double stranded RNA binding domain using only the sulfur anomalous diffraction in SAD phasing. 2021;Curr Res Struct Biol. 3:112–120. 10.1016/j.crstbi.2021.05.002
  • Molinaro M, Sheiner LB, Neelon FA, et al. Effect of chemical modification of dihydrouridine in yeast transfer ribonucleic acid on amino acid acceptor activity and ribosomal binding. J Biol Chem. 1968;243:1277–1282.
  • Whelan F, Jenkins HT, Griffiths SC, et al. From bacterial to human dihydrouridine synthase: automated structure determination. Acta Crystallogr D Biol Crystallogr. 2015;71:1564–1571.
  • Dalluge JJ, Hashizume T, McCloskey JA. Quantitative measurement of dihydrouridine in RNA using isotope dilution liquid chromatography-mass spectrometry (LC/MS). Nucleic Acids Res. 1996a;24:3242–3245.
  • Davis DR, Griffey RH, Yamaizumi Z, et al. 15N-labeled tRNA. Identification of dihydrouridine in Escherichia coli tRNAfMet, tRNALys, and tRNAPhe by 1H-15N two-dimensional NMR. J Biol Chem. 1986;261:3584–3587.
  • Deb I, Sarzynska J, Nilsson L, et al. Rapid communication capturing the destabilizing effect of dihydrouridine through molecular simulations. Biopolymers. 2014;101:985–991.
  • Formoso C, Tinoco I Jr. Minor nucleosides in RNA: optical studies of dinucleoside phosphates containing dihydrouridine. Biopolymers. 1971;10:1533–1541.
  • Jack A, Ladner JE, Klug A. Crystallographic refinement of yeast phenylalanine transfer RNA at 2-5A resolution. J Mol Biol. 1976;108:619–649.
  • Quigley GJ, Rich A. Structural domains of transfer RNA molecules. Science. 1976;194:796–806.
  • Rohrer DC, Sundaralingam M. Stereochemistry of nucleic acids and their constituents. VI. The crystal structure and conformation of dihydrouracil: a minor base of transfer-ribonucleic acid. Acta Crystallogr B. 1970;26:546–553.
  • Suck D, Saenger W, Hobbs J. Molecular and crystal structure of 2’-chloro-2’-deoxyuridine. Biochim Biophys Acta. 1972;259:157–163.
  • Suck D, Saenger W, Zechmeister K. Conformation of the tRNA minor constituent dihydrouridine. FEBS Lett. 1971;12:257–259.
  • Sundaralingam M, Rao ST, Abola J. Molecular conformation of dihydrouridine: puckered base nucleoside of transfer RNA. Science. 1971a;172:725–727.
  • Westhof E, Dumas P, Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985;184:119–145.
  • Westhof E, Sundaralingam M. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry. 1986;25:4868–4878.
  • Woo NH, Roe BA, Rich A. Three-dimensional structure of Escherichia coli initiator tRNAfMet. Nature. 1980;286:346–351.
  • Moreau C, Ashamu GA, Bailey VC, et al. Synthesis of cyclic adenosine 5’-diphosphate ribose analogues: a C2ʹendo/syn “southern” ribose conformation underlies activity at the sea urchin cADPR receptor. Org Biomol Chem. 2011;9:278–290.
  • Sehnal D, Bittrich S, Deshpande M, et al. Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021;49:W431–W437.
  • Sundaralingam M, Rao ST, Abola J. Stereochemistry of nucleic acids and their constituents. 23. Crystal and molecular structure of dihydrouridine “hemihydrate”, a rare nucleoside with a saturated base occurring in the dihydrouridine loop of transfer ribonucleic acids. J Am Chem Soc. 1971b;93:7055–7062.
  • Stuart JW, Basti MM, Smith WS, et al. Structure of the trinucleotide D-acp3u-A with coordinated Mg2+ demonstrates that modified nucleosides contribute to regional conformations of RNA. Nucl Nucl. 1996;15:1009–1028.
  • Peng WT, Robinson MD, Mnaimneh Set al. A panoramic view of yeast noncoding RNA processing. Cell. 2003;113:919–933.