1,578
Views
3
CrossRef citations to date
0
Altmetric
Short Communication

Sexually dimorphic microRNA miR-190 regulates lifespan in male Drosophila

ORCID Icon & ORCID Icon
Pages 1085-1093 | Received 13 Mar 2022, Accepted 15 Sep 2022, Published online: 30 Sep 2022

References

  • Iliadi KG, Knight D, Boulianne GL. Healthy aging -insights from Drosophila. Front Physiol. 2012;3. DOI:10.3389/fphys.2012.00106.
  • Vera E, Bernardes de Jesus B, Foronda M, et al. The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2012;2(4):732–737.
  • Piper MDW, Skorupa D, Partridge L. Diet, metabolism and lifespan in Drosophila. Exp Gerontol. 2005;40(11):857–862.
  • Strilbytska O, Strutynska T, Semaniuk U, et al. Dietary sucrose defines lifespan and metabolism in drosophila. Ukrainian Biochemical Journal. 2020; DOI:10.15407/ubj92.05.097
  • Flurkey K, Currer JM, and Harrison DE. Mouse Models in Aging Research.The Mouse in Biomedical Research (Second Edition). 2007;637–672. DOI:10.1016/B978-012369454-6/50074-1
  • Russell S J, Kahn C Ronald. (2007). Endocrine regulation of ageing. Nat Rev Mol Cell Biol, 8(9), 681–91. DOI:10.1038/nrm2234
  • Tower J. Sex-specific regulation of aging and apoptosis. Mech Ageing Dev. 2006;127(9):705–718.
  • Boulan L, Martín D, Milán M. Bantam miRNA promotes systemic growth by connecting insulin signaling and ecdysone production. Curr Biol. 2013;23(6):473–478.
  • Chawla G, Sokol N S. (2011). MicroRNAs in Drosophila development. Int Rev Cell Mol Biol, 286 1–65. DOI:10.1016/B978-0-12-385859-7.00001-X
  • Redmond W, Allen D, Christian Elledge M, et al. Screening of microRNAs controlling body fat in Drosophila melanogaster and identification of miR-969 and its target, Gr47b. PLoS ONE. 2019;14(7):e0219707.
  • Suh YS, Bhat S, Hong S-H, et al. Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR. Nat Commun. 2015;6:7693.
  • Varghese J, Cohen SM. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev. 2007;21(18):2277–2282.
  • Liu N, Landreh M, Cao K, et al. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature. 2012;482(7386):519–523.
  • Weigelt CM, Hahn O, Arlt K, et al. Loss of miR-210 leads to progressive retinal degeneration in Drosophila melanogaster. Life Science Alliance. 2019; DOI:10.26508/lsa.201800149
  • Aw SS, Lim IKH, Tang MXM, et al. A glio-protective role of mir-263a by tuning sensitivity to glutamate. Cell Rep. 2017;19(9):1783–1793.
  • Chawla G, Deosthale P, Childress S, et al. A let-7-to-miR-125 MicroRNA Switch regulates neuronal integrity and lifespan in Drosophila. PLoS Genet. 2016a;12:8.
  • Karres JS, Hilgers V, Carrera I, et al. The conserved microRNA MiR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell. 2007;131(1):136–145.
  • Chawla G, Deosthale P, Childress S, et al. A let-7-to-miR-125 MicroRNA switch regulates neuronal integrity and lifespan in Drosophila. PLoS Genet. 2016b;12(8):e1006247.
  • Zhang X, Lyu J, Jin X, et al. A motor neuron protective role of miR-969 mediated by the transcription factor kay. RNA Biol. 2020;17(9):1277–1283.
  • Ueda M, Sato T, Ohkawa Y, et al. Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Genes Cells. 2018;23(2):80–93.
  • Esslinger SM, Schwalb B, Helfer S, et al. Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biol. 2013;10(6):1042–1056.
  • Vilmos P, Bujna Á, Szuperák M, et al. Viability, longevity, and egg production of drosophila melanogaster are regulated by the miR-282 microRNA. Genetics. 2013;195(2):469–480.
  • Chen YW, Song S, Weng R, et al. Systematic study of Drosophila MicroRNA functions using a collection of targeted knockout mutations. Dev Cell. 2014;31(6):784–800.
  • Donelson NC, Dixit R, Pichardo-Casas I, et al. MicroRNAs regulate multiple aspects of locomotor behavior in Drosophila. G3 (Bethesda). 2020;10(1):43–55.
  • Behnke JA, Ye C, Moberg KH, et al. A protocol to detect neurodegeneration in Drosophila melanogaster whole-brain mounts using advanced microscopy. STAR Protocols. 2021;2(3):100689.
  • Fulga TA, McNeill EM, Binari R, et al. A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs. Nat Commun. 2015;6(1). DOI:10.1038/ncomms8279
  • Cai LJ, Tu L, Li T, et al. Up-regulation of microRNA-375 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease by inhibiting SP1. Aging (Albany NY). 2020. DOI:10.18632/aging.102649
  • De Lella Ezcurra AL, Bertolin AP, Kim K, et al. miR-190 enhances HIF-dependent responses to hypoxia in drosophila by inhibiting the prolyl-4-hydroxylase fatiga. PLoS Genet. 2016;12(5):e1006073.
  • Fagegaltier D, Fagegaltier D, Gordon A, et al. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity. Genetics. 2014;198(2):647–668.
  • Lee K Pum, Simpson S J, Clissold F J, Brooks R, Ballard J William, Taylor P W, Soran N, Raubenheimer D. (2008). Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc Natl Acad Sci U S A, 105(7), 2498–503. DOI:10.1073/pnas.0710787105
  • Malacrida S, De Lazzari F, Mrakic-Sposta S, et al. Lifespan and ROS levels in different Drosophila melanogaster strains after 24 h hypoxia exposure. Biol Open. 2022;11(6). DOI:10.1242/bio.059386
  • Polan DM, Alansari M, Lee B, et al. Early-life hypoxia alters adult physiology and reduces stress resistance and lifespan in Drosophila. J Exp Biol. 2020. DOI:10.1242/jeb.226027
  • Hall BS, Barnett YA, Crofts JJ, et al. Identification of novel genes associated with longevity in Drosophila melanogaster - a computational approach. Aging (Albany NY). 2019;11(23):11244–11267.
  • Magwire MM, Yamamoto A, Carbone MA, et al. Quantitative and molecular genetic analyses of mutations increasing Drosophila life span. PLoS Genet. 2010;6(7):e1001037.
  • Merzetti E M, Staveley B E. (2016). Identifying potential PARIS homologs in D. melanogaster. Genet Mol Res, 15(4). DOI:10.4238/gmr15048934
  • Hamada N, Bäckesjö C, Smith C Edvard and Yamamoto D. (2005). Functional replacement of Drosophila Btk29A with human Btk in male genital development and survival. FEBS Letters, 579(19), 4131–4137. DOI:10.1016/j.febslet.2005.06.042
  • O’Dowd DK, Germeraad SE, Aldrich RW. Alterations in the expression and gating of Drosophila sodium channels by mutations in the para gene. Neuron. 1989;2(4):1301–1311.
  • Rival T, Soustelle L, Strambi C, Besson M, Iché M, Birman S. (2004). Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr Biol, 14(7), 599–605. DOI:10.1016/j.cub.2004.03.039
  • Palladino M J, Bower J E, Kreber R, Ganetzky B. (2003). Neural dysfunction and neurodegeneration in Drosophila Na+/K+ ATPase alpha subunit mutants. J Neurosci, 23(4), 1276–86.
  • Parsons SM, Prior C, Marshal IG. Acetylcholine trans-port, storage and release. Int Rev Neurol. 1993; DOI:10.1016/S0074-7742(08)
  • Wessels HH, Lebedeva S, Hirsekorn A, et al. Global identification of functional microRNA-mRNA interactions in Drosophila. Nat Commun. 2019;10(1). DOI:10.1038/s41467-019-09586-z
  • Xia X, Fu X, Wu B, et al. Circadian regulation of microRNA-target chimeras in Drosophila. BioRxiv. 2019. DOI:10.1101/622183
  • Liu N, Abe M, Sabin LR, et al. The exoribonuclease nibbler controls 3′ end processing of microRNAs in drosophila. Curr Biol. 2011;21(22):1888–1893.