1,229
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

High-throughput mapping of RNA solvent accessibility at the single-nucleotide resolution by RtcB ligation between a fixed 5′-OH-end linker and unique 3′-P-end fragments from hydroxyl radical cleavage

ORCID Icon, , &
Pages 1179-1189 | Received 31 May 2022, Accepted 02 Nov 2022, Published online: 12 Nov 2022

References

  • Wan Y, Kertesz M, Spitale RC, et al. Understanding the transcriptome through RNA structure. Nat Rev Genet. 2011;12(9):641–655.
  • Mortimer SA, Kidwell MA, Doudna JA. Insights into RNA structure and function from genome-wide studies. Nat Rev Genet. 2014;15(7):469–479.
  • Sussman JL, Lin D, Jiang J, et al. Protein data bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallographica Section D. Biol Crystallogr. 1998;54(6):1078–1084.
  • Mailler E, Paillart JC, Marquet R, et al. The evolution of RNA structural probing methods: from gels to next‐generation sequencing. Wiley Interdiscip Rev RNA. 2019;10(2):e1518.
  • England WE, Garfio CM, Spitale RC. Chemical approaches to analyzing RNA structure transcriptome‐wide. ChemBioChem. 2021;22(7):1114–1121.
  • Solayman M, Litfin T, Singh J, et al. Probing RNA structures and functions by solvent accessibility: an overview from experimental and computational perspectives. Brief Bioinform. 2022;23(3):bbac112.
  • Barik A, Nithin C, Karampudi N, et al. Probing binding hot spots at protein–RNA recognition sites. Nucleic Acids Res. 2016;44(2):e9–e9.
  • Mukherjee S, Bahadur RP. An account of solvent accessibility in protein-RNA recognition. Sci Rep. 2018;8(1):1–13.
  • Rouskin S, Zubradt M, Washietl S, et al. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature. 2014;505(7485):701–705.
  • Yang Y, Li X, Zhao H, et al. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction. RNA. 2017;23(1):14–22.
  • Zubradt M, Gupta P, Persad S, et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods. 2017;14(1):75–82.
  • Feng C, Chan D, Joseph J, et al. Light-activated chemical probing of nucleobase solvent accessibility inside cells. Nat Chem Biol. 2018;14(3):276.
  • Zinshteyn B, Chan D, England W, et al. Assaying RNA structure with LASER-Seq. Nucleic Acids Res. 2019;47(1):43–55.
  • Chan D, Feng C, England WE, et al. Diverse functional elements in RNA predicted transcriptome-wide by orthogonal RNA structure probing. Nucleic Acids Res. 2021;49(20):11868–11882.
  • Wang X-W, Liu C-X, Chen -L-L, et al. RNA structure probing uncovers RNA structure-dependent biological functions. Nat Chem Biol. 2021;17(7):755–766.
  • Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320(5881):1344–1349.
  • Novoa EM, Beaudoin JD, Giraldez AJ, et al. Best practices for genome-wide RNA structure analysis: combination of mutational profiles and drop-off information. biorxiv. 2020;176883. https://www.biorxiv.org/content/10.1101/176883v2.
  • Ellefson JW, Gollihar J, Shroff R, et al. Synthetic evolutionary origin of a proofreading reverse transcriptase. Science. 2016;352(6293):1590–1593.
  • Menéndez-Arias L. Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses. 2009;1(3):1137–1165.
  • Celander D, Cech T. Visualizing the higher order folding of a catalytic RNA molecule. Science. 1991;251(4992):401–407.
  • Adilakshmi T, Lease RA, Woodson SA. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res. 2006;34(8):e64–e64.
  • Celander DW. Probing RNA structures with hydroxyl radicals. Curr Protoc Nucleic Acid Chem. 2001;6:Unit 6.5.
  • Latham JA, Cech TR. Defining the inside and outside of a catalytic RNA molecule. Science. 1989;245(4915):276–282.
  • Kielpinski LJ, Vinther J. Massive parallel-sequencing-based hydroxyl radical probing of RNA accessibility. Nucleic Acids Res. 2014;42(8):e70–e70.
  • Chakravarty AK, Subbotin R, Chait BT, et al. RNA ligase RtcB splices 3′-phosphate and 5′-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3′) pp (5′) G intermediates. Proc Nat Acad Sci. 2012;109(16):6072–6077.
  • Ban N, Beckmann R, Cate JH, et al. A new system for naming ribosomal proteins. Curr Opin Struct Biol. 2014;24:165–169.
  • Peach SE, York K, Hesselberth JR. Global analysis of RNA cleavage by 5′-hydroxyl RNA sequencing. Nucleic Acids Res. 2015;43(17):e108–e108.
  • Zhu Y, Machleder EM, Chenchik A, et al. Reverse transcriptase template switching: a SMART™ approach for full-length cDNA library construction. Biotechniques. 2001;30(4):892–897.
  • Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359.
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842.
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–12.
  • Dunkle JA, Xiong L, Mankin AS, et al. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Nat Acad Sci. 2010;107(40):17152–17157.
  • Shivram H, Iyer VR. Identification and removal of sequencing artifacts produced by mispriming during reverse transcription in multiple RNA-seq technologies. RNA. 2018;24(9):1266–1274.
  • Gillen AE, Yamamoto TM, Kline E, et al. Improvements to the HITS-CLIP protocol eliminate widespread mispriming artifacts. BMC Genomics. 2016;17(1):1–11.
  • Balázs Z, Tombácz D, Csabai Z, et al. Template-switching artifacts resemble alternative polyadenylation. BMC Genomics. 2019;20(1):1–10.
  • Tang DT, Plessy C, Salimullah M, et al. Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. Nucleic Acids Res. 2013;41(3):e44–e44.
  • Wulf MG, Maguire S, Humbert P, et al. Non-templated addition and template switching by Moloney murine leukemia virus (MMLV)-based reverse transcriptases co-occur and compete with each other. J Biol Chem. 2019;294(48):18220–18231.
  • Kivioja T, Vähärautio A, Karlsson K, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2012;9(1):72–74.
  • Hansen KD, Brenner SE, Dudoit S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 2010;38(12):e131–e131.
  • Hadizadeh MH, Yang L, Fang G, et al. The mobility and solvation structure of a hydroxyl radical in a water nanodroplet: a Born–Oppenheimer molecular dynamics study. Phys Chem Chem Phys. 2021;23(27):14628–14635.
  • Sugimoto Y, König J, Hussain S, et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol. 2012;13(8):1–13.
  • Han CM, Catoe D, Munro SA, et al. Simultaneous RNA purification and size selection using on-chip isotachophoresis with an ionic spacer. Lab Chip. 2019;19(16):2741–2749.
  • Adilakshmi T, Soper SF, Woodson SA. Structural analysis of RNA in living cells by in vivo synchrotron X-ray footprinting. Methods Enzymol. 2009;468:239–258.