1,094
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The effect of crRNA–target mismatches on cOA-mediated interference by a type III-A CRISPR-Cas system

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1293-1304 | Received 08 Sep 2022, Accepted 18 Nov 2022, Published online: 24 Nov 2022

References

  • Wright AV, Nunez JK, Doudna JA. Biology and applications of crispr systems: harnessing nature’s toolbox for genome engineering. Cell. 2016;164(1–2):29–44.
  • Nussenzweig PM, Marraffini LA. Molecular mechanisms of CRISPR-Cas immunity in bacteria. Annu Rev Genet. 2020;54(1):93–120.
  • Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.
  • Hatoum-Aslan A, Samai P, Maniv I, et al. A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs. J Biol Chem. 2013;288(39):27888–27897.
  • Kazlauskiene M, Kostiuk G, Venclovas Č, et al. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science. 2017;357(6351):605–609.
  • Niewoehner O, Garcia-Doval C, Rostol JT, et al. Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers. Nature. 2017;548(7669):543–548.
  • Nasef M, Muffly MC, Beckman AB, et al. Regulation of cyclic oligoadenylate synthesis by the Staphylococcus epidermidis Cas10-Csm complex. RNA. 2019;25(8):948–962.
  • Athukoralage JS, White MF. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence. RNA. 2021.
  • Deng L, Garrett RA, Shah SA, et al. A novel interference mechanism by a type IIIB CRISPR-Cmr module in sulfolobus. Mol Microbiol. 2013;87(5):1088–1099.
  • Hatoum-Aslan A, Maniv I, Samai P, et al. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. J Bacteriol. 2014;196(2):310–317.
  • Jiang W, Samai P, Marraffini LA. Degradation of Phage transcripts by CRISPR-Associated RNases enables type III CRISPR-Cas Immunity. Cell. 2016;164(4):710–721.
  • Rostol JT, Marraffini LA. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR–Cas immunity. Nat Microbiol. 2019;4(4):656–662.
  • Liu TY, Liu -J-J, Aditham AJ, et al. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble. Nat Commun. 2019;10(1):3001.
  • Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827–832.
  • Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013;31(9):839–843.
  • Kim D, Kim J, Hur JK, et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34(8):863–868.
  • Kleinstiver BP, Tsai SQ, Prew MS, et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol. 2016;34(8):869–874.
  • Murugan K, Seetharam AS, Severin AJ, et al. CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. J Biol Chem. 2020;295(17):5538–5553.
  • Manica A, Zebec Z, Steinkellner J, et al. Unexpectedly broad target recognition of the CRISPR-mediated virus defence system in the archaeon sulfolobus solfataricus. Nucleic Acids Res. 2013;41(22):10509–10517.
  • Maniv I, Jiang W, Bikard D, et al. Impact of different target sequences on type III CRISPR-Cas immunity. J Bacteriol. 2016;198(6):941–950.
  • Pyenson NC, Gayvert K, Varble A, et al. Broad targeting specificity during bacterial type III CRISPR-Cas immunity constrains viral escape. Cell Host Microbe. 2017;22(3):343–53 e3.
  • Johnson K, Learn BA, Estrella MA, et al. Target sequence requirements of a type III-B CRISPR-Cas immune system. J Biol Chem. 2019;294(26):10290–10299.
  • Staals RJ, Zhu Y, Taylor DW, et al. RNA targeting by the type III-A CRISPR-Cas csm complex of thermus thermophilus. Mol Cell. 2014;56(4):518–530.
  • Pan S, Li Q, Deng L, et al. A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system. RNA Biol. 2019;16(9):1166–1178.
  • Steens JA, Zhu Y, Taylor DW, et al. SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation. Nat Commun. 2021;12(1):5033.
  • Rouillon C, Athukoralage JS, Graham S, et al. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. Elife. 2018;7. DOI:10.7554/eLife.36734
  • Gruschow S, Adamson CS, White MF. Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector. Nucleic Acids Res. 2021;49(22):13122–13134.
  • Rouillon C, Athukoralage JS, Graham S, et al. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems. Methods Enzymol. 2019;616:191–218.
  • Ichikawa HT, Cooper JC, Lo L, et al. Programmable type III-A CRISPR-Cas DNA targeting modules. PLoS One. 2017;12(4):e0176221.
  • Foster K, Kalter J, Woodside W, et al. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. RNA Biol. 2019;16(4):449–460.
  • Gorski SA, Vogel J, Doudna JA. RNA-based recognition and targeting: sowing the seeds of specificity. Nat Rev Mol Cell Biol. 2017;18(4):10509–10517.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–21. 10.1126/science.1225829
  • Mogila I, Kazlauskiene M, Valinskyte S, et al. Genetic dissection of the type III-A CRISPR-Cas system csm complex reveals roles of individual subunits. Cell Rep. 2019;26(10):2753–654.
  • Santiago-Frangos A, Hall LN, Nemudraia A, et al. Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic. Cell Reports Medicine. 2021;2:100319.
  • Woodside WT, Vantsev N, Catchpole RJ, et al. Type III-A CRISPR systems as a versatile gene knockdown technology. RNA. 2022;28:1074–1088.
  • Chou-Zheng L, Hatoum-Aslan A. Expression and purification of the cas10-Csm complex from staphylococci. Biol Protoc. 2017;7(11). DOI:10.21769/BioProtoc.2353
  • Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008;322(5909):1843–1845.
  • Wong I, Lohman TM. A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc Natl Acad Sci U S A. 1993;90(12):5428–5432.
  • Gibson DG, Young L, Chuang R-Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–345.