1,173
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

MicroRNA mimics can distort physiological microRNA effects on immune checkpoints by triggering an antiviral interferon response

, , , , , , , , , , , & show all
Pages 1305-1315 | Received 09 Oct 2022, Accepted 24 Nov 2022, Published online: 05 Dec 2022

References

  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3; 75(5):843–854.
  • Montano M. MICRORNAs: miRRORS OF HEALTH AND DISEASE. Transl Res J Lab Clin Med. 2011 Apr;157(4):157–162.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23; 116(2):281–297.
  • Paul P, Chakraborty A, Sarkar D, et al. Interplay between miRNAs and human diseases. J Cell Physiol. 2018;233(3):2007–2018.
  • Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9(1):287–314.
  • Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016 Jan 28;1(1):1–9.
  • Avvari S, Prasad D, Khan IA. Role of MicroRNAs in Cell Growth Proliferation and Tumorigenesis. Prasad D, Santosh Sushma P,editors. Role of MicroRNAs in cancers [Internet]. Singapore:Springer Nature.2022 cited 2022 Jun 20 37–51.Available from 10.1007/978-981-16-9186-7_3.
  • Magee P, Shi L, Garofalo M. Role of microRNAs in chemoresistance. Ann Transl Med. 2015 Dec;3(21):332.
  • Shirjang S, Mansoori B, Asghari S, et al. MicroRNAs in cancer cell death pathways: apoptosis and necroptosis. Free Radic Biol Med. 2019 Aug 1;139:1–15.
  • Zaravinos A. The regulatory role of MicroRNAs in EMT and cancer. J Oncol. 2015;2015:865816.
  • Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020 Jun;13(6):100773.
  • Kahlert C, Lahes S, Radhakrishnan P, et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin Cancer Res. 2011 Dec 18 17(24):7654–7663.
  • Kahlert C, Klupp F, Brand K, et al. Invasion front-specific expression and prognostic significance of microRNA in colorectal liver metastases. Cancer Sci. 2011;102(10):1799–1807.
  • Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Lett. 2020 Jan 1; 468:72–81
  • Soundararajan R, Fradette JJ, Konen JM, et al. Targeting the interplay between epithelial-to-mesenchymal-transition and the immune system for effective immunotherapy. Cancers (Basel). 2019 May;11(5):714.
  • Thompson JC, Hwang WT, Davis C, et al. Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer Amst Neth. 2020 Jan;139:1–8.
  • Mahmoudian RA, Mozhgani S, Abbaszadegan MR, et al. Correlation between the immune checkpoints and EMT genes proposes potential prognostic and therapeutic targets in ESCC. J Mol Histol. 2021 Jun;52(3):597–609.
  • Pitt JM, Vétizou M, Daillère R, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016 Jun 21 44(6):1255–1269.
  • He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020 Aug;30(8):660–669.
  • Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002 Sep 17; 99(19):12293–12297.
  • Yasinska IM, Sakhnevych SS, Pavlova L, et al. The Tim-3-galectin-9 pathway and its regulatory mechanisms in human breast cancer. Front Immunol. 2019;10:1594.
  • Uyttenhove C, Pilotte L, Théate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003 Oct;9(10):1269–1274.
  • Holmgaard RB, Zamarin D, Munn DH, et al. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013 Jun 10; 210(7):1389–1402.
  • Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008 Apr 1; 22(7):894–907.
  • Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther. 2010 Aug 1; 10(3):219–222.
  • Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun. 2014 Oct 28 5(1):5241.
  • Cao L, Bridle KR, Shrestha R, et al. CD73 and PD-L1 as potential therapeutic targets in gallbladder cancer. Int J Mol Sci. 2022 Jan 29; 23(3):1565.
  • Oh DY, He AR, Qin S, et al. A phase 3 randomized, double-blind, placebo-controlled study of durvalumab in combination with gemcitabine plus cisplatin (GemCis) in patients (pts) with advanced biliary tract cancer (BTC): TOPAZ-1. J Clin Oncol. 2022 Feb;40(4_suppl):378.
  • Miyagiwa M, Ichida T, Tokiwa T, et al. A new human cholangiocellular carcinoma cell line (HuCC-T1) producing carbohydrate antigen 19/9 in serum-free medium. Vitro Cell Dev Biol J Tissue Cult Assoc. 1989 Jun;25(6): 503–510.
  • Kusaka Y, Tokiwa T, Sato J. Establishment and characterization of a cell line from a human cholangiocellular carcinoma. Res Exp Med Z Gesamte Exp Med Einschl Exp Chir. 1988;188(5):367–375
  • Yamada N, Chung Y, Ohtani H, et al. Establishment and characterization of a new human gallbladder carcinoma cell line (OCUG-1) producing TA-4. Int J Oncol. 1997 Jun 1 10(6):1251–1255.
  • Homma S, Nagamori S, Fujise K, et al. Human bile duct carcinoma cell line producing abundant mucin in vitro. Gastroenterol Jpn. 1987 Aug;22(4):474–479.
  • Homma S, Hasumura S, Nagamori S, et al. Establishment and characterization of a human gall bladder carcinoma cell line NOZ. Hum Cell. 1988 Mar;1(1):95–97.
  • Sripa B, Leungwattanawanit S, Nitta T, et al. Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol. 2005 Jun 14 11(22):3392–3397.
  • Maruyama M, Kobayashi N, Westerman KA, et al. Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. Transplantation. 2004 Feb 15 77(3):446–451.
  • Saijyo S, Kudo T, Suzuki M, et al. Establishment of a new extrahepatic bile duct carcinoma cell line, TFK-1. Tohoku J Exp Med. 1995 Sep;177(1):61–71.
  • Posch F, Prinz F, Balihodzic A, et al. MiR-200c-3p modulates cisplatin resistance in biliary tract cancer by ZEB1-independent mechanisms. Cancers (Basel). 2021 Aug 8 13(16):3996.
  • Orzalli MH, Kagan JC. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 2017 Nov;27(11):800–809.
  • Kang E, Jung SC, Nam SK, et al. Tissue miR-200c-3p and circulating miR-1290 as potential prognostic biomarkers for colorectal cancer. Sci Rep. 2022 Feb 10 12(1):2295.
  • Anastasiadou E, Ceccarelli S, Messina E, et al. MiR-200c-3p maintains stemness and proliferative potential in adipose-derived stem cells by counteracting senescence mechanisms. PloS One. 2021;16(9):e0257070.
  • Anastasiadou E, Messina E, Sanavia T, et al. MiR-200c-3p contrasts PD-L1 induction by combinatorial therapies and slows proliferation of epithelial ovarian cancer through downregulation of β-catenin and c-myc. Cells. 2021 Mar 1 10(3):519.
  • Noman MZ, Janji B, Abdou A, et al. The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology. 2017 Jan 23 6(1):e1263412.
  • Jin HY, Gonzalez-Martin A, Miletic AV, et al. Transfection of microRNA mimics should be used with caution. Front Genet. 2015;6:340.
  • Thomson DW, Bracken CP, Szubert JM, et al. On measuring miRNAs after transient transfection of mimics or antisense inhibitors. PLoS ONE. 2013 Jan 24; 8(1):e55214.
  • Goldgraben MA, Russell R, Rueda OM, et al. Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner. RNA N Y N. 2016 Feb;22(2):193–203.
  • Tsai SY, Segovia JA, Chang TH, et al. Regulation of TLR3 activation by S100A9. J Immunol. 2015 Nov 1 195(9):4426–4437.
  • Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008 Apr 3 452(7187):591–597.
  • Kleinman ME, Kaneko H, Cho WG, et al. Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol Ther J Am Soc Gene Ther. 2012 Jan;20(1):101–108.
  • Cho WG, Albuquerque RJC, Kleinman ME, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci U S A. 2009 Apr 28 106(17):7137–7142.
  • Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet. 2022 Jun 1; 38(6):613–626.
  • Beg MS, Brenner AJ, Sachdev J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 2017 Apr;35(2):180–188.
  • Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020 May;122(11):1630–1637.
  • Zhang Z, Huang Q, Yu L, et al. The role of miRNA in tumor immune escape and miRNA-based therapeutic strategies. Front Immunol. Internet]. 2022 cited 2022 Jun 25;12. Available from: 10.3389/fimmu.2021.807895