3,418
Views
4
CrossRef citations to date
0
Altmetric
Review

Cross-kingdom small RNA communication between plants and fungal phytopathogens-recent updates and prospects for future agriculture

, & ORCID Icon
Pages 109-119 | Accepted 22 Mar 2023, Published online: 29 Mar 2023

References

  • Summanwar A, Basu U, Rahman H, et al. Non-coding RNAs as emerging targets for crop improvement. Plant Sci. 2020;297:110521.
  • Zhou X, Cui J, Meng J, et al. Interactions and links among the noncoding RNAs in plants under stresses. Theor Appl Genet. 2020;133(12):3235–3248.
  • Zhang S, Dou Y, Li S, et al. DAWDLE interacts with DICER-LIKE proteins to mediate small RNA biogenesis. Plant Physiol. 2018;177(3):1142–1151.
  • Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108.
  • Kang K, Zhong J, Jiang L, et al. Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing. PLoS ONE. 2013;8(10):e76288.
  • Lau SK, Chow WN, Wong AY, et al. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Neg Trop Dis. 2013;7(8):e2398.
  • Zhou Q, Wang Z, Zhang J, et al. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol. 2012;116(11):1156–1162.
  • Mathur M, Nair A, Kadoo N. Plant-pathogen interactions: MicroRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics. 2020;112(5):3021–3035.
  • Wang M, Dean RA. Movement of small RNAs in and between plants and fungi. Mol Plant Pathol. 2020;21(4):589–601.
  • Cai Q, Qiao L, Wang M, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2019;3601:1126–1129. 10.1126/science.aar4142
  • Zand Karimi H, Baldrich P, Rutter BD, et al. Arabidopsis apoplastic fluid contains sRNA- and circular RNA–protein complexes that are located outside extracellular vesicles. Plant Cell. 2022;34(5):1863–1881.
  • Wang M, Weiberg A, Jin H. Pathogen small RNAs: a new class of effectors for pathogen attacks. Mol Plant Pathol. 2015;16(3):219.
  • Tamiru M, Hardcastle TJ, Lewsey MG. Regulation of genome‐wide DNA methylation by mobile small RNAs. New Phytol. 2018;217(2):540–546.
  • Kehr J, Morris RJ, Kragler F. Long-distance transported RNAs: from identity to function. Ann Rev Plan Biol. 2022;73(1):457–474.
  • Huang CY, Wang H, Hu P, et al. Small RNAs–big players in plant-microbe interactions. Cell Host Microbe. 2019;26(2):173–182.
  • De Palma M, Ambrosone A, Leone A, et al. Plant roots release small extracellular vesicles with antifungal activity. Plants. 2020;9(12):1777.
  • Regente M, Pinedo M, San Clemente H, et al. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J Expt Bot. 2017;68(20):5485–5495.
  • Zhang T, Zhao YL, Zhao JH, et al. Cotton plants export microRnas to inhibit virulence gene expression in a fungal pathogen. Nat Plants. 2016;2(10):1–6.
  • Shahid S, Kim G, Johnson NR, et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature. 2018;553(7686):82–85.
  • Weiberg A, Wang M, Lin FM, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 2013;342(6154):118–123.
  • Wang M, Weiberg A, Dellota JE, et al. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biol. 2017;14(4):421–428.
  • Jin Y, Zhao JH, Zhao P, et al. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philos Transe R Soc B Biol Sci. 2019;374(1767):20180309.
  • Jian J, Liang X. One small RNA of Fusarium graminearum targets and silences CEBiP gene in common wheat. Microorganisms. 2019;7(10):425.
  • Dunker F, Trutzenberg A, Rothenpieler JS, et al. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. Elife. 2020;9:e56096.
  • Kusch S, Frantzeskakis L, Thieron H, et al. Small RNAs from cereal powdery mildew pathogens may target host plant genes. Fungal Biol. 2018;122(11):1050–1063.
  • Ji HM, Mao HY, Li SJ, et al. Fol‐milr1, a pathogenicity factor of Fusarium oxysporum, confers tomato wilt disease resistance by impairing host immune responses. New Phytol. 2021;232(2):705–718.
  • Zotti M, Dos Santos EA, Cagliari D, et al. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manage Sci. 2018;74(6):1239–1250.
  • Koch A, Biedenkopf D, Furch A, et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRnas involves a plant passage and is controlled by the fungal silencing machinery. PLOS Pathogens. 2016;12(10):e1005901.
  • Mishra R, Joshi RK, Zhao K. Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci. 2018;9:1361.
  • Mishra R, Joshi RK, Zhao K. Base editing in crops: current advances, limitations and future implications. Plant Biotechnol J. 2019;18(1):20–31.
  • Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–329.
  • Park CH, Chen S, Shirsekar G, et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern–triggered immunity in rice. Plant Cell. 2012;24(11):4748–4762. DOI:10.1105/tpc.112.105429
  • Selin C, de Kievit TR, Belmonte MF, et al. Elucidating the role of effectors in plant-fungal interactions: progress and Challenges. Front Microbiol. 2016;7:600.
  • Hua C, Zhao JH, Guo HS. Trans-kingdom RNA silencing in plant–fungal pathogen interactions. Mol Plant. 2020;11(2):235–244.
  • Cui C, Wang Y, Liu J, et al. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat Commun. 2019;10(1):1–10.
  • He K, Xiao H, Sun Y, et al. Transgenic microRNA‐14 rice shows high resistance to rice stem borer. Plant Biotechol J. 2019;17(2):461–471.
  • Zeng J, Gupta VK, Jiang Y, et al. Cross-kingdom small RNAs among animals, plants and microbes. Cells. 2019;8(4):371.
  • Brosnan CA, Voinnet O. Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol. 2011;14(5):580–587.
  • Bouwmeester H, Schuurink RC, Bleeker PM, et al. The role of volatiles in plant communication. Plant J. 2019;100(5):892–907.
  • Koch A, Kogel KH. New wind in the sails: improving the agronomic value of crop plants through RNAi‐mediated gene silencing. Plant Biotechnol J. 2014;12(7):821–831.
  • Boavida LC, Qin P, Broz M, et al. Arabidopsis tetraspanins are confined to discrete expression domains and cell types in reproductive tissues and form homo-and heterodimers when expressed in yeast. Plant Physiol. 2013;163(2):696–712.
  • Hou Y, Zhai YI, Feng LI, et al. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe. 2019;25(1):153–165.
  • Pourrajab F, Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials). Heliyon. 2021;7:e06029.
  • Wang M, Weiberg A, Lin FM, et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants. 2016;2(10):1–10.
  • Derbyshire M, Mbengue M, Barascud M, et al. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. Molecular Plant Pathol. 2019;20(9):1279–1297.
  • Hu X, Hoden KP, Liao Z, et al. Phytophthora infestans Ago1-bound miRNA promotes potato late blight disease. New Phytol. 2022;233(1):443–457.
  • Yin C, Zhu H, Jiang Y, et al. Silencing dicer-like genes reduces virulence and sRNA generation in Penicillium italicum, the cause of citrus blue mold. Cells. 2020;9(2):363.
  • Xu M, Guo Y, Tian R, et al. Adaptive regulation of virulence genes by microRna‐like RNAs in Valsa mali. New Phytol. 2020;227(3):899–913.
  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Ann Rev Cell Dev Biol. 2014;30(1):255–289.
  • Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRnas and microRnas is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659.
  • Stotz H, Brotherton D, Inal J. Communication is key: extracellular vesicles as mediators of infection and defence during host–microbe interactions in animals and plants. FEMS Microbiol Rev. 2021;46(1):fuab044.
  • Kwon S, Tisserant C, Tulinski M, et al. Inside-out: from endosomes to extracellular vesicles in fungal RNA transport. Fungal Biol Rev. 2020;34(2):89–99.
  • Rajam MV, Chauhan S. Host-induced gene silencing (HIGS): an emerging strategy for the control of fungal plant diseases. In: Sarmah BK Borah BK, editors. Genome engineering for crop improvement. Concepts and strategies in plant sciences. Cham: Springer; 2021. DOI:10.1007/978-3-030-63372-1_4
  • Rutter BD, Innes RW. Extracellular vesicles as key mediators of plant–microbe interactions. Curr Opin Plant Biol. 2018;44:16–22.
  • Rutter BD, Innes RW. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol. 2017;173(1):728–741.
  • Baldrich P, Rutter BD, Karimi HZ, et al. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10-to 17-nucleotide “tiny. RNAs The Plant Cell. 2019;31(2):315–324.
  • Micali CO, Neumann U, Grunewald D, et al. Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cellular Microbiol. 2011;13(2):210–226.
  • Wang J, Ding Y, Wang J, et al. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell. 2010;22(12):4009–4030.
  • Moore RT, McAlear JH. Fine structure of Mycota. 5. Lomasomes—Previously uncharacterized hyphal structures. Mycologia. 1961;53(2):194–200.
  • Zhao K, Bleackley M, Chisanga D, et al. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Commun Biol. 2019;2(1):305. DOI:10.1038/s42003-019-0538-8
  • Rizzo J, Chaze T, Miranda K, et al. Characterization of extracellular vesicles produced by Aspergillus fumigatus protoplasts. mSphere. 2020;5(4). DOI:10.1128/mSphere.00476-20
  • Giraldo MC, Dagdas YF, Gupta YK, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun. 2013;4(1):1–12.
  • Nasfi S, Kogel KH. Packaged or unpackaged: appearance and transport of extracellular noncoding RNAs in the plant apoplast. ExRna. 2020;4:13.
  • Lasda E, Parker R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS ONE. 2016;11(2):e0148407.
  • Qi T, Guo J, Peng H, et al. Host-induced gene silencing: a powerful strategy to control diseases of wheat and barley. Int J Mol Sci. 2019;20(1):206.
  • Nunes CC, Dean RA. Host‐induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol. 2012;13(5):519–529.
  • Sang H, Kim JI. Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnol Rep. 2020;14(1):1–8.
  • Niu D, Hamby R, Sanchez JN, et al. Rnas—a new frontier in crop protection. Cur Opin Biotechnol. 2021;70:204–212.
  • Koch A, Kumar N, Weber L, et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci. 2013;110(48):19324–19329.
  • Panwar V, Jordan M, McCallum B, et al. Host‐induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnol J. 2018;16(5):1013–1023.
  • Gilbert MK, Majumdar R, Rajasekaran K, et al. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta. 2018;247(6):1465–1473.
  • Guo XY, Li Y, Fan J, et al. Host-induced gene silencing of MoAP1 confers broad-spectrum resistance to Magnaporthe oryzae. Front Plant Sci. 2019;10:433.
  • Dou T, Shao X, Hu C, et al. Host‐induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotech J. 2020;18(1):11.
  • Hu D, Chen ZY, Zhang C, et al. Reduction of Phakopsora pachyrhizi infection on soybean through host- and spray-induced gene silencing. Mol Plant Pathol. 2020;21(6):794–807.
  • Lundgren JG, Duan JJ. Rnai-based insecticidal crops: potential effects on nontarget species. BioScience. 2013;63(8):657–665.
  • Yin C, Hulbert S. Host Induced Gene Silencing (HIGS), a promising strategy for developing disease resistant crops. Omics Int. 2015;4(03):1–2.
  • Nerva L, Sandrini M, Gambino G, et al. Double-stranded RNAs (dsRnas) as a sustainable tool against gray mold (Botrytis cinerea) in grapevine: effectiveness of different application methods in an open-air environment. Biomolecules. 2020;10(2):200.
  • McLoughlin AG, Wytinck N, Walker PL, et al. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Sci Rep. 2018;8(1):1–14.
  • Qiao L, Lan C, Capriotti L, et al. Spray‐induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J. 2021;19(9):1756–1768.
  • Hoang BTL, Fletcher SJ, Brosnan CA, et al. Rnai as a foliar spray: efficiency and challenges to field applications. Int J Mol Sci. 2022;23(12):6639.
  • Tatiparti K, Sau S, Kashaw SK, et al. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials. 2017;7(4):77.
  • Mitter N, Worrall EA, Robinson KE, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants. 2017;3(2):1–10.
  • Gurusamy D, Mogilicherla K, Palli SR. Chitosan nanoparticles help double‐stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch Insect Biochem Physiol. 2020;104(4):e21677.
  • Kolge H, Kadam K, Galande S, et al. New frontiers in pest control: chitosan nanoparticles-shielded dsRNA as an effective topical RNAi spray for gram podborer biocontrol. ACS Applied Bio Mat. 2021;4(6):5145–5157.
  • Islam MT, Davis Z, Chen L, et al. Minicell‐based fungal RNAi delivery for sustainable crop protection. Microbial Biotechnol. 2021;14(4):1847–1856.