1,478
Views
0
CrossRef citations to date
0
Altmetric
Review

Small regulatory RNAs: from bench to bedside – a keystone symposia meeting report

ORCID Icon, , & ORCID Icon
Pages 136-139 | Accepted 08 Mar 2023, Published online: 04 Apr 2023

References

  • Sun R, Lin SF, Gradoville L, et al. Polyadenylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci, USA. 1996;93(21):11883–11888.
  • Zhong W, Wang H, Herndier B, et al. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci, USA. 1996;93(13):6641–6646.
  • Zhong W, Ganem D. Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8). J Virol. 1997;71(2):1207–1212.
  • Song MJ, Brown HJ, Wu TT, et al. Transcription activation of polyadenylated nuclear rna by rta in human herpesvirus 8/Kaposi’s sarcoma-associated herpesvirus. J Virol. 2001;75(7):3129–3140.
  • Borah S, Darricarrère N, Darnell A, et al. A viral nuclear noncoding RNA binds re-localized poly(a) binding protein and is required for late KSHV gene expression. PLOS Pathog. 2011;7(10):e1002300.
  • Conrad NK, Steitz JA. A Kaposi’s sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. Embo J. 2005;24(10):1831–1841.
  • Conrad NK, Mili S, Marshall EL, et al. Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element. Mol Cell. 2006;24(6):943–953.
  • Conrad NK, Shu MD, Uyhazi KE, et al. Mutational analysis of a viral RNA element that counteracts rapid RNA decay by interaction with the polyadenylate tail. Proc Natl Acad Sci, USA. 2007;104(25):10412–10417.
  • Mitton-Fry RM, DeGregorio SJ, Wang J, et al. Poly(a) tail recognition by a viral RNA element through assembly of a triple helix. Science. 2010;330(6008):1244–1247.
  • Brown JA, Valenstein ML, Yario TA, et al. Formation of triple-helical structures by the 3’-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci, USA. 2012;109(47):19202–19207.
  • Wilusz JE, JnBaptiste CK, Lu LY, et al. A triple helix stabilizes the 3’ ends of long noncoding RNAs that lack poly(a) tails. Genes Dev. 2012;26(21):2392–2407.
  • Tycowski KT, Shu MD, Steitz JA. Myriad triple-helix-forming structures in the Transposable element RNAs of plants and fungi. Cell Rep. 2016;15(6):1266–1276.
  • Torabi SF, Vaidya AT, Tycowski KT, et al. Science. 2021;371(6529):eabe6523. DOI:10.1126/science.abe6523
  • Han J, LaVigne CA, Jones BT, et al. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science. 2020;370(6523):eabc9546.
  • Han J, Mendell JT. MicroRNA turnover: a tale of tailing, trimming, and targets. Trends Biochem Sci. 2023;48(1):26–39.
  • Dragomir MP, Knutsen E, Ga C. SnapShot: unconventional miRNA Functions. Cell. 2018;174(4):1038.
  • Calin GA, Liu CG, Ferracin M, et al. Ultraconserved regions encoding ncRnas are altered in human leukemias and carcinomas. Cancer Cell. 2007;12(3):215–229. DOI:10.1016/j.ccr.2007.07.027
  • Fabbri M, Girnita L, Varani G, et al. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 2019;29(9):1377–1388.
  • Winkle M, El-Daly SM, Fabbri M, et al. Noncoding RNA therapeutics – challenges and potential solutions. Nat Rev Drug Discov. 2021;20(8):629–651.
  • Edmonds MD, Boyd KL, Moyo T, et al. MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer. J Clin Invest. 2016;126(1):349–364. DOI:10.1172/JCI82720
  • Lewis H, Lance R, Troyer D, et al. MiR-888 is an expressed prostatic-secretions-derived microRNA that promotes prostate cell growth and migration. Cell Cycle. 2014;13(2):227–239.
  • Hasegawa T, Glavich GJ, Pahuski M, et al. Characterization and evidence of the miR-888 cluster as a novel cancer network in prostate. Mol Cancer Res. 2018;16(4):669–681.
  • Lee EC, Valencia T, Allerson C, et al. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun. 2019;10(1):4148. DOI:10.1038/s41467-019-11918-y
  • Seo YE, Suh HW, Bahal R, et al. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials. 2019;201:87–98.
  • Dhuri K, Gaddam RR, Vikram A, et al. Therapeutic potential of chemically modified, synthetic, triplex peptide nucleic acid-based Oncomir inhibitors for cancer therapy. Cancer Res. 2021;81(22):5613–5624.
  • Malik S, Saltzman WM, Bahal R. Extracellular vesicles mediated exocytosis of antisense peptide nucleic acids. Mol Ther Nucleic Acids. 2021;25:302–315.
  • Fujiwara M, Raheja R, Garo LP, et al. MicroRNA-92a promotes CNS autoimmunity by modulating the regulatory and inflammatory T cell balance. J Clin Invest. 2022;132(10):e155693. DOI:10.1172/JCI155693
  • Orellana EA, Liu Q, Yankova E, et al. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021;81(16):3323–3338.e14. DOI:10.1016/j.molcel.2021.06.031
  • Vogel J. An RNA biology perspective on species-specific programmable RNA antibiotics. Mol Microbiol. 2020;113(3):550–559.
  • Hughes KJ, Chen X, Burroughs AM, et al. An RNA repair operon regulated by damaged tRnas. Cell Rep. 2020;33(12):108527.
  • Beisel CL, Storz G. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev. 2010;34(5):866–882.
  • Aoyama JJ, Raina M, Zhong A, et al. Dual-function Spot 42 RNA encodes a 15-amino acid protein that regulates the CRP transcription factor. Proc Natl Acad Sci, USA. 2022;119(10):e2119866119.
  • Garcia-Martin R, Wang G, Brandão BB, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature. 2022;601(7893):446–451.
  • Huberdeau MQ, Shah VN, Nahar S, et al. A specific type of Argonaute phosphorylation regulates binding to microRnas during C. elegans development. Cell Rep. 2022;41(11):111822. DOI:10.1016/j.celrep.2022.111822
  • Fazio AD, Schlackow M, Pong SK, et al. Dicer dependent tRNA derived small RNAs promote nascent RNA silencing. Nucleic Acids Res. 2022;50(3):1734–1752.
  • Lee SM, Kaye KM, Slack FJ. Cellular microRNA-127-3p suppresses oncogenic herpesvirus-induced transformation and tumorigenesis via down-regulation of SKP2. Proc Natl Acad Sci, USA. 2021;118(45):e2105428118.
  • Wang X, Ramat A, Simonelig M, et al. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol. 2023;24(2):123–141.
  • Laggerbauer B, Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease. J Clin Invest. 2022;132(11):e159179.
  • Brown CR, Gupta S, Qin J, et al. Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates. Nucleic Acids Res. 2020;48(21):11827–11844. DOI:10.1093/nar/gkaa670
  • McDougall R, Ramsden D, Agarwal S, et al. The nonclinical disposition and pharmacokinetic/pharmacodynamic properties of N-Acetylgalactosamine-conjugated small interfering RNA are highly predictable and build confidence in translation to human. Drug Metab Dispos. 2022;50(6):781–797. DOI:10.1124/dmd.121.000428
  • Anastasiadou E, Seto AG, Beatty X, et al. Cobomarsen, an Oligonucleotide inhibitor of miR-155, slows DLBCL Tumor cell growth In Vitro and In Vivo. Clin Cancer Res. 2021;27(4):1139–1149. DOI:10.1158/1078-0432.CCR-20-3139
  • Miliotis C, Slack FJ. MiR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Lett. 2021;518:115–126.
  • Powers JT, Tsanov KM, Pearson DS, et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature. 2016;535(7611):246–251. DOI:10.1038/nature18632
  • Becker WR, Ober-Reynolds B, Jouravleva K, et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol Cell. 2019;75(4):741–755.e11.
  • Berard DJ, Leslie SR. Miniaturized flow cell with pneumatically-actuated vertical nanoconfinement for single-molecule imaging and manipulation. Biomicrofluidics. 2018;12(5):054107.
  • Yoo B, Jordan VC, Sheedy P, et al. RNAi-mediated PD-L1 inhibition for pancreatic cancer immunotherapy. Sci Rep. 2019;9(1):4712.