2,490
Views
4
CrossRef citations to date
0
Altmetric
Research paper

L1CAM immunocapture generates a unique extracellular vesicle population with a reproducible miRNA fingerprint

, & ORCID Icon
Pages 140-148 | Accepted 29 Mar 2023, Published online: 11 Apr 2023

References

  • Fabian MR, Sundermeier TR, Sonenberg N. Understanding how miRnas post-transcriptionally regulate gene expression. Prog Mol Subcell Biol. 2010;50:1–20.
  • Vasudevan S, Tong Y, Steitz JA. Cell cycle control of microRNA-mediated translation regulation. Cell Cycle Georget Tex. 2008;7:1545–1549.
  • Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. DOI:10.1080/20013078.2018.1535750
  • Sardar Sinha M, Ansell-Schultz A, Civitelli L, et al. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol (Berl). 2018;136(1):41–56. DOI:10.1007/s00401-018-1868-1
  • Wang M, Yu F, Ding H, et al. Emerging function and clinical values of exosomal MicroRNAs in cancer. Mol Ther Nucleic Acids. 2019;16:791–804.
  • Banack SA, Dunlop RA, Stommel EW, et al. miRNA extracted from extracellular vesicles is a robust biomarker of amyotrophic lateral sclerosis. J Neurol Sci. 2022;442:120396.
  • Richards D, Morren JA, Pioro EP. Time to diagnosis and factors affecting diagnostic delay in amyotrophic lateral sclerosis. J Neurol Sci. 2020;417:117054.
  • Mehta P, Antao V, Kaye W, et al. Prevalence of amyotrophic lateral sclerosis - United States, 2010-2011. MMWR. 2014;Suppl 63(7):1–14.
  • Banack SA, Dunlop RA, Cox PA. An miRNA fingerprint using neural-enriched extracellular vesicles from blood plasma: towards a biomarker for amyotrophic lateral sclerosis/motor neuron disease. Open Biol. 2020;10(6). DOI:10.1098/rsob.200116
  • Mustapic M, Eitan E, Werner JK Jr, et al. Plasma Extracellular Vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017;11:278.
  • Dunlop RA, Banack SA, Cox PA. A comparison of the efficiency of RNA extraction from extracellular vesicles using the Qiagen RNeasy MinElute versus Enzymax LLC RNA Tini Spin columns and qPCR of miRNA. Biol Methods Protoc. 2021;6(1):1–9.
  • Hellemans J, Mortier G, De Paepe A, et al. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8(2):R19. DOI:10.1186/gb-2007-8-2-r19
  • Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034. DOI:10.1186/gb-2002-3-7-research0034
  • Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88(1):487–514.
  • Matias-Garcia PR, Wilson R, Mussack V, et al. Impact of long-term storage and freeze-thawing on eight circulating microRnas in plasma samples. PLoS ONE. 2020;15:e0227648.
  • Blondal T, Jensby Nielsen S, Baker A, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59:S1–6.
  • Basso D, Padoan A, Laufer T, et al. Relevance of pre-analytical blood management on the emerging cardiovascular protein biomarkers TWEAK and HMGB1 and on miRNA serum and plasma profiling. Clin Biochem. 2017;50(4–5):186–193. DOI:10.1016/j.clinbiochem.2016.11.005
  • Chen Y, Gelfond JA, McManus LM, et al. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics. 2009;10:407.
  • Godoy PM, Barczak AJ, DeHoff P, et al. Comparison of reproducibility, accuracy, sensitivity, and specificity of miRNA quantification platforms. Cell Rep. 2019;29(12):4212–4222.e5. DOI:10.1016/j.celrep.2019.11.078
  • Witwer KW, Halushka MK. Toward the promise of microRnas – Enhancing reproducibility and rigor in microRNA research. RNA Biol. 2016;13(11):1103–1116.
  • Faissner A, Kruse J, Nieke J, et al. Expression of neural cell adhesion molecule L1 during development, in neurological mutants and in the peripheral nervous system. Brain Res. 1984;15(1):69–82.
  • Fauré J, Lachenal G, Court M, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci. 2006;31(4):642–648. DOI:10.1016/j.mcn.2005.12.003
  • Maness PF, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci. 2007;10(1):19–26.
  • Rathjen FG, Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. Embo J. 1984;3(1):1–10.
  • Lachenal G, Pernet-Gallay K, Chivet M, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011;46(2):409–418. DOI:10.1016/j.mcn.2010.11.004
  • Norman M, Ter-Ovanesyan D, Trieu W, et al. L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nat Methods. 2021;18(6):631–634. DOI:10.1038/s41592-021-01174-8
  • Kiefel H, Bondong S, Hazin J, et al. L1cam. Cell Adhes Migr. 2012;6(4):374–384. DOI:10.4161/cam.20832