2,196
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

MiR-2b-2-5p regulates lipid metabolism and reproduction by targeting CREB in Bactrocera dorsalis

, , , &
Pages 164-176 | Accepted 13 Apr 2023, Published online: 24 Apr 2023

References

  • Roy S, Saha T, Zou Z, et al. Regulatory pathways controlling female insect reproduction. Annu Rev Entomol. 2018;63(1):489–511. DOI:10.1146/annurev-ento-020117-043258
  • Engelmann F. Reproductive biology of invertebrates. volume xii, part a: progress in vitellogenesis. Q Rev Biol. 2004;79(1):77–78.
  • Wu Z, Yang L, He Q, et al. Regulatory mechanisms of vitellogenesis in insects. Front Cell Dev Biol. 2020;8:593613.
  • Raikhel AS, Dhadialla TS. Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol. 1992;37:217–251.
  • Gilbert LI, Serafin RB, Watkins NL, et al. Ecdysteroids regulate yolk protein uptake by drosophila melanogaster oocytes. J Insect Physiol. 1998;44(7–8):637–644. DOI:10.1016/S0022-1910(98)00020-1
  • Matsumoto T, Yamano K, Kitamura M, et al. Ovarian follicle cells are the site of vitellogenin synthesis in the pacific abalone Haliotis discus hannai. Comp Biochem Physiol Part A: Mol Integr Physiol. 2008;149(3):293–298. DOI:10.1016/j.cbpa.2008.01.003
  • Huo Y, Yu Y, Chen L, et al. Insect tissue-specific vitellogenin facilitates transmission of plant virus. PLOS Pathog. 2018;14(2):e1006909. DOI:10.1371/journal.ppat.1006909
  • Shi XX, Zhang H, Quais MK, et al. Knockdown of sphingomyelinase (NlSmase) causes ovarian malformation of brown planthopper, Nilaparvata lugens (Stål). Insect Mol Biol. 2022;31(4):391–402. DOI:10.1111/imb.12767
  • Song J, Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell Mol Life Sci. 2020;77(10):1893–1909.
  • Lu K, Xia C, Liu WT, et al. TOR pathway-mediated juvenile hormone synthesis regulates nutrient-dependent female reproduction in nilaparvata lugens (Stål). Int J Mol Sci. 2016;17(4):438. DOI:10.3390/ijms17040438
  • Arrese EL, Soulages JL. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 2010;55(1):207–225.
  • Toprak U, Hegedus D, Doğan C, et al. A journey into the world of insect lipid metabolism. Arch Insect Biochem Physiol. 2020;104(2):e21682. DOI:10.1002/arch.21682
  • Skowronek P, Wójcik Ł, Strachecka A. Fat body-multifunctional insect tissue. Insects. 2021;12(6):547.
  • Sim C, Denlinger DL. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol Genomics. 2009;39(3):202–209.
  • Grönke S, Mildner A, Fellert S, et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 2005;1(5):323–330. DOI:10.1016/j.cmet.2005.04.003
  • Grönke S, Müller G, Hirsch J, et al. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol. 2007;5(6):e137. DOI:10.1371/journal.pbio.0050137
  • Gáliková M, Diesner M, Klepsatel P, et al. Energy homeostasis control in drosophila adipokinetic hormone mutants. Genetics. 2015;201(2):665–683. DOI:10.1534/genetics.115.178897
  • Baumbach J, Xu Y, Hehlert P, et al. Gαq, Gγ1 and Plc21C control drosophila body fat storage. J Genet Genomics. 2014;41(5):283–292. DOI:10.1016/j.jgg.2014.03.005
  • Pang R, Qiu J, Li T, et al. The regulation of lipid metabolism by a hypothetical P-loop NTPase and its impact on fecundity of the brown planthopper. Biochim Biophys Acta Gen Subj. 2017;1861(7):1750–1758. DOI:10.1016/j.bbagen.2017.03.011
  • Ziegler R, Van Antwerpen R. Lipid uptake by insect oocytes. Insect Biochem Mol Biol. 2006;36(4):264–272.
  • Fontana R, Della Torre S. The deep correlation between energy metabolism and reproduction: a view on the effects of nutrition for women fertility. Nutrients. 2016;8(2):87.
  • Hansen M, Flatt T, Aguilaniu H. Reproduction, fat metabolism, and life span: what is the connection? Cell Metab. 2013;17(1):10–19.
  • Buszczak M, Lu X, Segraves W, et al. Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: diacylglycerol acyltransferase. Genetics. 2002;160(4):1511–1518. DOI:10.1093/genetics/160.4.1511
  • Guo S, Tian Z, Zhu F, et al. Lipin modulates lipid metabolism during reproduction in the cabbage beetle. Insect Biochem Mol Biol. 2021;139:103668.
  • Della Torre S, Benedusi V, Fontana R, et al. Energy metabolism and fertility: a balance preserved for female health. Nat Rev Endocrinol. 2014;10(1):13–23. DOI:10.1038/nrendo.2013.203
  • Brookheart RT, Swearingen AR, Collins CA, et al. High-sucrose-induced maternal obesity disrupts ovarian function and decreases fertility in Drosophila melanogaster. Biochim Biophys Acta Mol Basis Dis. 2017;1863(6):1255–1263. DOI:10.1016/j.bbadis.2017.03.014
  • Liao S, Amcoff M, Nässel D. Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. Insect Biochem Mol Biol. 2021;133:103495.
  • Belles X. MicroRNAs and the Evolution of Insect Metamorphosis. Annu Rev Entomol. 2017;62(1):111–125.
  • Zhang Q, Dou W, Pan D, et al. Genome-wide analysis of microRNAs in relation to pupariation in oriental fruit Fly. Front Physiol. 2019;10:301.
  • Neshat S, Tzeng S, Green J. Gene delivery for immunoengineering. Curr Opin Biotechnol. 2020;66:1–10.
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–524.
  • Reinhart B, Slack F, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–906. DOI:10.1038/35002607
  • Vella M, Choi E, Lin S, et al. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3‘UTR. Genes Dev. 2004;18(2):132–137. DOI:10.1101/gad.1165404
  • Hussain M, Asgari S. Functional analysis of a cellular microRNA in insect host-ascovirus interaction. J Virol. 2010;84(1):612–620.
  • Skalsky R, Cullen B. Viruses, microRnas, and host interactions. Annu Rev Microbiol. 2010;64(1):123–141.
  • Zhou R, Rana T. RNA-based mechanisms regulating host-virus interactions. Immunol Rev. 2013;253(1):97–111.
  • Qiao J, Du Y, Yu J, et al. MicroRNAs as potential biomarkers of insecticide exposure: a review. Chem Res Toxicol. 2019;32(11):2169–2181. DOI:10.1021/acs.chemrestox.9b00236
  • Zhang Q, Dou W, Song ZH, et al. Identification and profiling of Bactrocera dorsalis microRnas and their potential roles in regulating the developmental transitions of egg hatching, molting, pupation and adult eclosion. Insect Biochem Mol Biol. 2020;127:127.
  • Ling L, Kokoza VA, Zhang C, et al. MicroRNA-277 targets insulin-like peptides 7 and 8 to control lipid metabolism and reproduction in Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A. 2017;114(38):E8017–8024. DOI:10.1073/pnas.1710970114
  • Zhang R, Zhang S, Li T, et al. RNA sequencing identifies an ovary-enriched microRNA, miR-311-3p, involved in ovarian development and fecundity by targeting Endophilin B1 in Bactrocera dorsalis. Pest Manag Sci. 2022;79(2):688–700. DOI:10.1002/ps.7236 .
  • Chou MY, Mau RF, Jang EB, et al. Morphological features of the ovaries during oogenesis of the Oriental fruit fly, Bactrocera dorsalis, in relation to the physiological state. J Insect Sci. 2012;12(144):1–12. DOI:10.1673/031.012.14401
  • Hagedorn HH, Fallon AM. Ovarian control of vitellogenin synthesis by the fat body in Aedes aegypti. Nature. 1973;244(5411):103–105.
  • Rolf Z, Rik VA. Lipid uptake by insect oocytes. Insect Biochem Mol Biol. 2006;36(4):264–272.
  • Reichholf B, Herzog VA, Fasching N, et al. Time-resolved small RNA sequencing unravels the molecular principles of MicroRNA homeostasis. Mol Cell. 2019;75(4):756–768 e757. DOI:10.1016/j.molcel.2019.06.018
  • Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):R1. DOI:10.1186/gb-2003-5-1-r1
  • Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–798. DOI:10.1016/S0092-8674(03)01018-3
  • Kruger J, Rehmsmeier M. Rnahybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34(Web Server issue):W451–454.
  • Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–861.
  • Frank DA, Greenberg ME. CREB: a mediator of long-term memory from mollusks to mammals. Cell. 1994;79(1):5–8.
  • Gaddelapati SC, Dhandapani RK, Palli SR. CREB-binding protein regulates metamorphosis and compound eye development in the yellow fever mosquito, Aedes aegypti. Biochim Biophys Acta, Gene Regul Mech. 2020;1863(8):194576.
  • Song W, Cheng D, Hong S, et al. Midgut-derived activin regulates glucagon-like action in the fat body and glycemic control. Cell Metab. 2017;25(2):386–399. DOI:10.1016/j.cmet.2017.01.002
  • Kim SK, Rulifson EJ. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature. 2004;431(7006):316–320.
  • Xu PZ, Vernooy SY, Guo M, et al. The Drosophila MicroRNA mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003;13(9):790–795. DOI:10.1016/S0960-9822(03)00250-1
  • Iovino N, Pane A, Gaul U. MiR-184 has multiple roles in Drosophila female germline development. Dev Cell. 2009;17(1):123–133.
  • Xie J, Chen H, Zheng W, et al. MiR-275/305 cluster is essential for maintaining energy metabolic homeostasis by the insulin signaling pathway in Bactrocera dorsalis. PLoS Genet. 2022;18(10):e1010418. DOI:10.1371/journal.pgen.1010418
  • Lin H, Chen C, de Belle J, et al. CREBA and CREBB in two identified neurons gate long-term memory formation in Drosophila. Proc Natl Acad Sci U S A. 2021;118(37):e2100624118. DOI:10.1073/pnas.2100624118.
  • Qin D, Zhou Y, Zhang P, et al. Azadirachtin downregulates the expression of the CREB gene and protein in the brain and directly or indirectly affects the cognitive behavior of the Spodoptera litura fourth-instar larvae. Pest Manag Sci. 2021;77(4):1873–1885. DOI:10.1002/ps.6212
  • Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol. 2011;12(3):141–151.
  • Yang H, He X, Yang J, et al. Activation of Camp-response element-binding protein is positively regulated by PKA and calcium-sensitive calcineurin and negatively by PKC in insect. Insect Biochem Mol Biol. 2013;43(11):1028–1036. DOI:10.1016/j.ibmb.2013.08.011
  • Iijima K, Zhao L, Shenton C, et al. Regulation of energy stores and feeding by neuronal and peripheral CREB activity in Drosophila. PLoS ONE. 2009;4(12):e8498. DOI:10.1371/journal.pone.0008498
  • Kirfel P, Vilcinskas A, Skaljac M. Acyrthosiphon pisumLysine Acetyltransferase p300/CBP plays an important role in reproduction, embryogenesis and longevity of the pea aphid. Insects. 2020;11(5):265.
  • Dittmer N, Sun G, Wang S, et al. CREB isoform represses yolk protein gene expression in the mosquito fat body. Mol Cell Endocrinol. 2003;210(1–2):39–49. DOI:10.1016/j.mce.2003.08.010
  • Koo S, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005;437(7062):1109–1111. DOI:10.1038/nature03967
  • Kramer J, Davidge J, Lockyer J, et al. Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev Biol. 2003;3(1):5. DOI:10.1186/1471-213X-3-5
  • Zhang J, Zhang Z, Zhang R, et al. Identification of COP9 signalosome subunit genes in bactrocera dorsalis and functional analysis of csn3 in female fecundity. Front Physiol. 2019;10:162.
  • Cai Z, Yao Z, Li Y, et al. Intestinal probiotics restore the ecological fitness decline of Bactrocera dorsalis by irradiation. Evol Appl. 2018;11(10):1946–1963. DOI:10.1111/eva.12698
  • Urban A, Neukirchen S, Jaeger KE. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res. 1997;25(11):2227–2228.