2,448
Views
1
CrossRef citations to date
0
Altmetric
Review

The Importance of Being RNA-est: considering RNA-mediated ribosome plasticity

& ORCID Icon
Pages 177-185 | Accepted 13 Apr 2023, Published online: 26 Apr 2023

References

  • Melnikov S, Ben-Shem A, de LN, et al. One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol. 2012;19(6):560–567.
  • Borovinskaya MA, Pai RD, Zhang W, et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol. 2007;14:727–732.
  • Ben-Shem A, de LN, Melnikov S, et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science. 2011;334:1524–1529.
  • Khatter H, Myasnikov AG, Natchiar SK, et al. Structure of the human 80S ribosome. Nature. 2015;520:640–645.
  • Bowman JC, Petrov AS, Frenkel-Pinter M, et al. Root of the tree: the significance, evolution, and origins of the ribosome. Chem Rev. 2020;120(11):4848–4878.
  • Melnikov S, Manakongtreecheep K, Söll D. Revising the structural diversity of ribosomal proteins across the three domains of life. Mol Biol Evol. 2018;35(7):1588–1598.
  • Londei P, Ferreira-Cerca S. Ribosome biogenesis in Archaea. Front Microbiol. 2021;12:686977.
  • Ban N, Beckmann R, Cate JH, et al. A new system for naming ribosomal proteins. Curr Opin Struc Biol. 2014;24:165–169.
  • Gay DM, Lund AH, Jansson MD. Translational control through ribosome heterogeneity and functional specialization. Trends Biochem Sci. 2022;47(1):66–81.
  • Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Bio. 2012;13(6):355–369.
  • Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature. 2004;428:617–624.
  • Bauer JW, Brandl C, Haubenreisser O, et al. Specialized yeast ribosomes: a customized tool for selective mRNA translation. PLoS ONE. 2013;8:e67609.
  • Ghulam MM, Catala M, Elela SA. Differential expression of duplicated ribosomal protein genes modifies ribosome composition in response to stress. Nucleic Acids Res. 2020;48(4):1954–1968.
  • Genuth NR, Barna M. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. Mol Cell. 2018;71(3):364–374.
  • Gerst JE. Pimp my ribosome: ribosomal protein paralogs specify translational control. Trends Genet. 2018;34(11):832–845.
  • Petrov AS, Bernier CR, Hsiao C, et al. Evolution of the ribosome at atomic resolution. Proc Natl Acad Sci. 2014;111(28):10251–10256. DOI:10.1073/pnas.1407205111
  • Petrov AS, Gulen B, Norris AM, et al. History of the ribosome and the origin of translation. Proc Natl Acad Sci. 2015;112(50):15396–15401. DOI:10.1073/pnas.1509761112
  • Hariharan N, Ghosh S, Palakodeti D. The story of rRNA expansion segments: finding functionality amidst diversity. Wiley Interdiscip Rev RNA. 2023;14(1):e1732.
  • Norris K, Hopes T, Aspden JL. Ribosome heterogeneity and specialization in development. Wiley Interdiscip Rev RNA. 2021;12(4):e1644.
  • Li D, Wang J. Ribosome heterogeneity in stem cells and development. J Cell Bio. 2020;219(6):e202001108.
  • Simsek D, Tiu GC, Flynn RA, et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell. 2017;169(6):1051–1065.e18.
  • Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999;24(11):437–440.
  • Henras AK, Plisson‐chastang C, O’Donohue M, et al. An overview of pre‐ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA. 2015;6(2):225–242.
  • Parks MM, Kurylo CM, Dass RA, et al. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci Adv. 2018;4(2):eaao0665.
  • Parks MM, Kurylo CM, Batchelder JE, et al. Implications of sequence variation on the evolution of rRNA. Chromosome Res. 2019;27(1–2):89–93.
  • Leffers H, Andersen AH. The sequence of 28S ribosomal RNA varies within and between human cell lines. Nucleic Acids Res. 1993;21(6):1449–1455.
  • Gonzalez IL, Sylvester JE, Schmickel RD. Human 28S ribosomal RNA sequence heterogeneity. Nucleic Acids Res. 1988;16(21):10213–10224.
  • Babaian A. Intra- and Inter-individual genetic variation in human ribosomal RNAs. bioRxiv. 2017;118760. DOI:10.1101/118760
  • Symonová R. Integrative rDnaomics—importance of the oldest repetitive fraction of the eukaryote genome. Genes-Basel. 2019;10:345.
  • Torres‐machorro AL, Hernández R, Cevallos AM, et al. Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev. 2010;34(1):59–86.
  • Eickbush TH, Eickbush DG. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics. 2007;175:477–485.
  • Jüttner M, Ferreira-Cerca S, Battistuzzi FU. Looking through the lens of the ribosome biogenesis evolutionary history: possible implications for archaeal phylogeny and eukaryogenesis. Mol Biol Evol. 2022;39(4):msac054.
  • Wormington WM, Brown DD. Onset of 5 S RNA gene regulation during Xenopus embryogenesis. Dev Biol. 1983;99(1):248–257.
  • Brown DD. A tribute to the xenopus laevis oocyte and egg. J Biol Chem. 2004;279(44):45291–45299.
  • Locati MD, Pagano JFB, Girard G, et al. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA. 2017;23(8):1188–1199. DOI:10.1261/rna.061515.117
  • Locati MD, Pagano JFB, Ensink WA, et al. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. RNA. 2017;23(4):446–456. DOI:10.1261/rna.059642.116
  • Rogers MJ, Gutell RR, Damberger SH, et al. Structural features of the large subunit rRNA expressed in Plasmodium falciparum sporozoites that distinguish it from the asexually expressed subunit rRNA. Rna New York N Y. 1996;2(2):134–145.
  • Vembar SS, Droll D, Scherf A. Translational regulation in blood stages of the malaria parasite Plasmodium spp.: systems-wide studies pave the way. Wiley Interdiscip Rev RNA. 2016;7(6):772–792.
  • Biesiada M, Hu MY, Williams LD, et al. rRNA expansion segment 7 in eukaryotes: from signature fold to tentacles. Nucleic Acids Res. 2022;50(18):10717–10732.
  • Penev PI, Fakhretaha-Aval S, Patel VJ, et al. Supersized ribosomal RNA expansion segments in asgard archaea. Genome Biol Evol. 2020;12(10):1694–1710.
  • Fujii K, Susanto TT, Saurabh S, et al. Decoding the function of expansion segments in ribosomes. Mol Cell. 2018;72(6):1013–1020.e6.
  • Armache J-P, Jarasch A, Anger AM, et al. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution. Proc Natl Acad Sci. 2010;107(46):19748–19753. DOI:10.1073/pnas.1009999107
  • Ramos LMG, Smeekens JM, Kovacs NA, et al. Yeast rRNA expansion segments: folding and function. J Mol Biol. 2016;428(20):4048–4059.
  • Knorr AG, Schmidt C, Tesina P, et al. Ribosome–nata architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nat Struct Mol Biol. 2019;26(1):35–39.
  • Jeeninga RE, Delft YV, de GVM, et al. Variable regions V13 and V3 of Saccharomyces cerevisiae contain structural features essential for normal biogenesis and stability of 5.8S and 25S rRNA. Rna New York N Y. 1997;3(5):476–488.
  • Ramesh M, Woolford JL. Eukaryote-specific rRNA expansion segments function in ribosome biogenesis. RNA. 2016;22:1153–1162.
  • Shedlovskiy D, Zinskie JA, Gardner E, et al. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. J Biol Chem. 2017;292(45):18469–18485.
  • Parker MS, Sallee FR, Park EA, et al. Homoiterons and expansion in ribosomal RNAs. FEBS Open Bio. 2015;5:864–876.
  • Pfeffer S, Brandt F, Hrabe T, et al. Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes. Structure. 2012;20:1508–1518.
  • Halic M, Becker T, Pool MR, et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature. 2004;427(6977):808–814.
  • Wild K, Aleksić M, Lapouge K, et al. MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments. Nat Commun. 2020;11(1):776.
  • Kraushar ML, Krupp F, Harnett D, et al. Protein Synthesis in the developing neocortex at near-atomic resolution reveals Ebp1-mediated neuronal proteostasis at the 60S tunnel exit. Mol Cell. 2021;81(2):304–322.e16. DOI:10.1016/j.molcel.2020.11.037
  • Pánek J, Kolář M, Vohradský J, et al. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5′ UTRs and its implications for eukaryotic gene translation regulation. Nucleic Acids Res. 2013;41(16):7625–7634.
  • Parker MS, Balasubramaniam A, Sallee FR, et al. The expansion segments of 28S ribosomal RNA extensively match human messenger RNAs. Frontiers Genetics. 2018;9:66.
  • Leppek K, Fujii K, Quade N, et al. Gene- and species-specific hox mRNA translation by ribosome expansion segments. Mol Cell. 2020;80(6):980–995.e13.
  • Leppek K, Byeon GW, Fujii K, et al. VELCRO-IP RNA-seq reveals ribosome expansion segment function in translation genome-wide. Cell Rep. 2021;34:108629.
  • Mallo M, Alonso CR. The regulation of Hox gene expression during animal development. Development. 2013;140:3951–3963.
  • Teixeira FK, Lehmann R. Translational control during developmental transitions. Csh Perspect Biol. 2019;11(6):a032987.
  • Taoka M, Nobe Y, Yamaki Y, et al. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 2018;46(18):gky811. DOI:10.1093/nar/gky811
  • Yip WSV, Vincent NG, Baserga SJ. Ribonucleoproteins in archaeal pre-Rrna processing and modification. Archaea. 2013;2013:614735.
  • Czekay DP, Kothe U. H/ACA small ribonucleoproteins: structural and functional comparison between archaea and eukaryotes. Front Microbiol. 2021;12:654370.
  • Breuer R, Gomes-Filho J-V, Randau L. Conservation of archaeal C/D box srna-guided RNA modifications. Front Microbiol. 2021;12:654029.
  • Polikanov YS, Melnikov SV, Söll D, et al. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat Struct Mol Biol. 2015;22(4):342–344.
  • Lareau LF, Hite DH, Hogan GJ, et al. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. Elife. 2014;3:e01257.
  • Sas-Chen A, Thomas JM, Matzov D, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature. 2020;583(7817):638–643. DOI:10.1038/s41586-020-2418-2
  • Marchand V, Pichot F, Neybecker P, et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 2020;48(19):e110.
  • Marchand V, Ayadi L, Bourguignon-Igel V, et al. RNA modifications, methods and protocols. Methods Mol Biology Clifton N J. 2021;2298:77–95.
  • Taoka M, Nobe Y, Hori M, et al. A mass spectrometry-based method for comprehensive quantitative determination of post-transcriptional RNA modifications: the complete chemical structure of Schizosaccharomyces pombe ribosomal RNAs. Nucleic Acids Res. 2015;43(18):e115.
  • Baudin-Baillieu A, Namy O. Saccharomyces cerevisiae, a powerful model for studying rRNA modifications and their effects on translation fidelity. Int J Mol Sci. 2021;22(14):7419.
  • Sloan KE, Warda AS, Sharma S, et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 2016;14(9):1138–1152.
  • Taoka M, Nobe Y, Yamaki Y, et al. The complete chemical structure of Saccharomyces cerevisiae rRNA: partial pseudouridylation of U2345 in 25S rRNA by snoRNA snR9. Nucleic Acids Res. 2016;44(18):8951–8961.
  • Motorin Y, Quinternet M, Rhalloussi W, et al. Constitutive and variable 2’-O-methylation (Nm) in human ribosomal RNA. RNA Biol. 2021;18(sup1):88–97.
  • Demirci H, Murphy F, Belardinelli R, et al. Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. RNA. 2010;16:2319–2324.
  • Desaulniers J-P, Chang Y-C, Aduri R, et al. Pseudouridines in rRNA helix 69 play a role in loop stacking interactions. Org Biomol Chem. 2008;6(21):3892–3895.
  • Sumita M, Jiang J, SantaLucia J, et al. Comparison of solution conformations and stabilities of modified helix 69 rRNA analogs from bacteria and human. Biopolymers. 2012;97:94–106.
  • King TH, Liu B, McCully RR, et al. Ribosome structure and activity are altered in cells lacking snoRnps that form pseudouridines in the peptidyl transferase center. Mol Cell. 2003;11(2):425–435.
  • Baxter-Roshek JL, Petrov AN, Dinman JD. Optimization of ribosome structure and function by rRNA base modification. PLoS ONE. 2007;2(1):e174.
  • Hirabayashi N, Sato NS, Suzuki T. Conserved loop sequence of helix 69 in Escherichia coli 23 S rRNA is involved in A-site tRNA binding and translational fidelity*. J Biol Chem. 2006;281(25):17203–17211.
  • Liang X, Liu Q, Fournier MJ. rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. Mol Cell. 2007;28(6):965–977.
  • Baudin-Baillieu A, Fabret C, Liang X, et al. Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Nucleic Acids Res. 2009;37(22):7665–7677.
  • Esguerra J, Warringer J, Blomberg A. Functional importance of individual rRNA 2′-O-ribose methylations revealed by high-resolution phenotyping. RNA. 2008;14:649–656.
  • Jansson M, Hafner S, Altinel K, et al. Ribosomal RNA methylation induced by MYC regulates translation. Nat Struct Mol Biol. 2021 Nov;28(11): 889–899. DOI:10.1038/s41594-021-00669- . Epub 2021 Nov 10. PMID: 34759377.
  • Piekna-Przybylska D, Przybylski P, Baudin-Baillieu A, et al. Ribosome performance is enhanced by a rich cluster of pseudouridines in the A-site finger region of the large subunit*. J Biol Chem. 2008;283(38):26026–26036.
  • Koh CM, Gurel B, Sutcliffe S, et al. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. Am J Pathol. 2011;178(4):1824–1834. DOI:10.1016/j.ajpath.2010.12.040
  • Marcel V, Ghayad SE, Belin S, et al. P53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 2013;24(3):318–330. DOI:10.1016/j.ccr.2013.08.013
  • Su H, Xu T, Ganapathy S, et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene. 2014;33:1348–1358.
  • Belin S, Beghin A, Solano-Gonzàlez E, et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS ONE. 2009;4(9):e7147.
  • Janin M, Coll-SanMartin L, Esteller M. Disruption of the RNA modifications that target the ribosome translation machinery in human cancer. Mol Cancer. 2020;19(1):70.
  • Sharma S, Marchand V, Motorin Y, et al. Identification of sites of 2′-O-methylation vulnerability in human ribosomal RNAs by systematic mapping. Sci Rep-UK. 2017;7(1):11490.
  • Garus A, Autexier AC. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA. 2021;27(12):rna.078953.121.
  • Penzo M, Rocchi L, Brugiere S, et al. Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation. Faseb J. 2015;29(8):3472–3482.
  • Babaian A, Rothe K, Girodat D, et al. Loss of m1acp3Ψ ribosomal RNA modification is a major feature of cancer. Cell Rep. 2020;31:107611.
  • Schosserer M, Minois N, Angerer TB, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6(1):6158. DOI:10.1038/ncomms7158
  • Heissenberger C, Liendl L, Nagelreiter F, et al. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res. 2019;47(22):11807–11825. DOI:10.1093/nar/gkz1043
  • Janin M, Ortiz-Barahona V, de MM, et al. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol. 2019;138(6):1053–1074. DOI:10.1007/s00401-019-02062-4
  • Liberman N, O’Brown ZK, Earl AS, et al. N6-adenosine methylation of ribosomal RNA affects lipid oxidation and stress resistance. Sci Adv. 2020;6(17):eaaz4370. DOI:10.1126/sciadv.aaz4370
  • Liu K, Santos DA, Hussmann JA, et al. Regulation of translation by methylation multiplicity of 18S rRNA. Cell Rep. 2021;34:108825.
  • Chen H, Liu Q, Yu D, et al. METTL5, an 18S rRNA-specific m6A methyltransferase, modulates expression of stress response genes. bioRxiv. 2020;1–44. DOI:10.1101/2020.04.27.064162
  • Lafontaine D, Delcour J, Glasser AL, et al. The DIM1 gene responsible for the conserved m62Am62A dimethylation in the 3′-terminal loop of 18 S rRNA is essential in yeast. J Mol Biol. 1994;241(3):492–497.
  • Ramachandran S, Krogh N, Jørgensen TE, et al. The shift from early to late types of ribosomes in zebrafish development involves changes at a subset of rRNA 2′-O-Me sites. RNA. 2020;26:1919–1934.
  • Hebras J, Krogh N, Marty V, et al. Developmental changes of rRNA ribose methylations in the mouse. RNA Biol. 2020;17(1):150–164.
  • Higa-Nakamine S, Suzuki T, Uechi T, et al. Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Res. 2012;40(1):391–398.
  • Jacq B. Sequence homologies between eukaryotic 5.8S rRNA and the 5′ end of prokaryotic 23S rRNA: evidences for a common evolutionary origin. Nucleic Acids Res. 1981;9(12):2913–2932.
  • Consortium TR, Sweeney BA, Petrov AI, et al. Rnacentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res. 2018;47:gky1206.
  • Wang M, Parshin AV, Shcherbik N, et al. Reduced expression of the mouse ribosomal protein Rpl17 alters the diversity of mature ribosomes by enhancing production of shortened 5.8S rRNA. RNA. 2015;21:1240–1248.
  • Rubin GM. Three forms of the 5.8‐S ribosomal RNA species in Saccharomyces cerevisiae. Eur J Biochem. 1974;41(1):197–202.
  • Henry Y, Wood H, Morrissey JP, et al. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. Embo J. 1994;13(10):2452–2463.
  • Venturi G, Zacchini F, Vaccari CL, et al. Primer extension coupled with fragment analysis for rapid and quantitative evaluation of 5.8S rRNA isoforms. PLoS ONE. 2021;16:e0261476.
  • Oeffinger M, Zenklusen D, Ferguson A, et al. Rrp17p is a eukaryotic exonuclease required for 5′ end processing of pre-60S ribosomal RNA. Mol Cell. 2009;36(5):768–781.
  • Faber AW, Vos HR, Vos JC, et al. 5′-end formation of yeast 5.8SL rRNA is an endonucleolytic event. Biochem Biophys Res Commun. 2006;345(2):796–802.
  • Allmang C, Henry Y, Morrissey JP, et al. Processing of the yeast pre-Rrna at sites A(2) and A(3) is linked. Rna New York N Y. 1996;2(1):63–73.
  • Schmitt ME, Clayton DA. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol. 1993;13(12):7935–7941.
  • Chu S, Archer RH, Zengel JM, et al. The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci. 1994;91(2):659–663.
  • Wang M, Pestov DG. 5′-end surveillance by Xrn2 acts as a shared mechanism for mammalian pre-Rrna maturation and decay. Nucleic Acids Res. 2011;39(5):1811–1822.
  • Sloan KE, Mattijssen S, Lebaron S, et al. Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. J Cell Biol. 2013;200(5):577–588.
  • Li X, Zengel JM, Lindahl L. A novel model for the RNase MRP-Induced switch between the formation of different forms of 5.8S rRNA. Int J Mol Sci. 2021;22(13):6690.
  • Eppens NA, Faber AW, Rondaij M, et al. Deletions in the S1 domain of Rrp5p cause processing at a novel site in ITS1 of yeast pre‐rRNA that depends on Rex4p. Nucleic Acids Res. 2002;30:4222–4231.
  • Aubert M, O’Donohue M-F, Lebaron S, et al. Pre-ribosomal RNA processing in human cells: from mechanisms to congenital diseases. Biomol. 2018;8:123.
  • Decatur WA, Schnare MN. Different mechanisms for pseudouridine formation in yeast 5S and 5.8S rRnas. Mol Cell Biol. 2008;28:3089–3100.
  • Mauro VP, Edelman GM. The ribosome filter hypothesis. Proc Natl Acad Sci. 2002;99:12031–12036.
  • Mauro VP, Edelman GM. The ribosome filter redux. Cell Cycle Georget Tex. 2007;6:2246–2251.
  • Ferretti MB, Karbstein K. Does functional specialization of ribosomes really exist? Rna New York N Y. 2019;25:521–538.
  • Shigeoka T, Koppers M, Wong H-W, et al. On-site ribosome remodeling by locally synthesized ribosomal proteins in axons. Cell Rep. 2019;29:3605–3619.e10.