3,081
Views
4
CrossRef citations to date
0
Altmetric
Review

Synthetic biology tools to promote the folding and function of RNA aptamers in mammalian cells

&
Pages 198-206 | Accepted 18 Apr 2023, Published online: 02 May 2023

References

  • Grundy FJ, Henkin TM. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell. 1993;74:475–482.
  • Eichhorn CD, Kang M, Feigon J. Structure and function of preQ(1) riboswitches. Biochim Biophys Acta. 2014;1839:939–950.
  • Batey RT, Gilbert SD, Montange RK. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. 2004;432:411–415.
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: rNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510.
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–822.
  • Stoltenburg R, Reinemann C, Strehlitz B. Selex–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24:381–403.
  • Berens C, Thain A, Schroeder R. A tetracycline-binding RNA aptamer. Bioorg Med Chem. 2001;9:2549–2556.
  • Jenison RD, Gill SC, Pardi A, et al. High-resolution molecular discrimination by RNA. Science. 1994;263:1425–1429.
  • Porter EB, Polaski JT, Morck MM, et al. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat Chem Biol. 2017;13:295–301.
  • Mohsen MG, Midy MK, Balaji A, et al. Exploiting natural riboswitches for aptamer engineering and validation. Nucleic Acids Res. 2023;51:966–981.
  • Dey SK, Filonov GS, Olarerin-George AO, et al. Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag. Nat Chem Biol. 2022;18:180–190.
  • Townshend B, Xiang JS, Manzanarez G, et al. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors. Nat Commun. 2021;12:1437.
  • Xiang JS, Kaplan M, Dykstra P, et al. Massively parallel RNA device engineering in mammalian cells with RNA-Seq. Nat Commun. 2019;10:4327.
  • Berens C, Groher F, Suess B. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression. Biotechnol J. 2015;10:246–257.
  • Iioka H, Loiselle D, Haystead TA, et al. Efficient detection of RNA-protein interactions using tethered RNAs. Nucleic Acids Res. 2011;39:e53.
  • de Jesus Santos AP, Oliveira-Giacomelli Á, de Sá VK, et al. Selection and application of aptamer affinity for protein purification. Methods Mol Biol. 2022;2466:187–203.
  • Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl. 2012;6:563–573.
  • Ikebukuro K, Kiyohara C, Sode K. Electrochemical detection of protein using a double aptamer sandwich. Anal Lett. 2004;37:2901–2909.
  • Iliuk AB, Hu L, Tao WA. Aptamer in bioanalytical applications. Anal Chem. 2011;83:4440–4452.
  • Litke JL, Jaffrey SR. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat Biotechnol. 2019;37:667–675.
  • Di Ruscio A, de Franciscis V. Minding the gap: unlocking the therapeutic potential of aptamers and making up for lost time. Molecular Therapy-Nucleic Acids. 2022;29:384–386.
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16:181–202.
  • Filonov GS, Kam CW, Song W, et al. In-gel imaging of RNA processing using broccoli reveals optimal aptamer expression strategies. Chem Biol. 2015;22:649–660.
  • Li X, Kim H, Litke JL, et al. Fluorophore-promoted RNA folding and photostability enables imaging of single broccoli-tagged mRnas in live mammalian cells. Angew Chem Int Ed Engl. 2020;59:4511–4518.
  • Katrekar D, Yen J, Xiang Y, et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nature Biotechnol. 2022;40:938–945.
  • Yi Z, Qu L, Tang H, et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nature Biotechnol. 2022;40:946–955.
  • Wang M, Xu J, Meng J, et al. Synthetic circular gRNA mediated biological function of CRISPR-(d) Cas9 system. Front Cell Dev Biol. 2022;10. DOI:10.3389/fcell.2022.863431
  • Paige JS, Wu KY, Jaffrey SR. RNA mimics of green fluorescent protein. Science. 2011;333:642–646.
  • Smola MJ, Weeks KM. In-cell RNA structure probing with SHAPE-MaP. Nat Protoc. 2018;13:1181–1195.
  • Strack RL, Disney MD, Jaffrey SR. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods. 2013;10:1219–1224.
  • Filonov GS, Moon JD, Svensen N, et al. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc. 2014;136:16299–16308.
  • Warner KD, Sjekloća L, Song W, et al. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nat Chem Biol. 2017;13:1195–1201.
  • Mieczkowski M, Steinmetzger C, Bessi I, et al. Large stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nat Commun. 2021;12:3549.
  • Autour A, Jeng SCY, Cawte AD, et al. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells. Nat Commun. 2018;9:656.
  • Huang H, Suslov NB, Li NS, et al. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat Chem Biol. 2014;10:686–691.
  • Warner KD, Chen MC, Song W, et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat Struct Mol Biol. 2014;21:658–663.
  • Bertrand E, Chartrand P, Schaefer M, et al. Localization of ASH1 mRNA particles in living yeast. Mol Cell. 1998;2:437–445.
  • Femino AM, Fay FS, Fogarty K, et al. Visualization of single RNA transcripts in situ. Science. 1998;280:585–590.
  • Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116:2833–2838.
  • Shav-Tal Y, Darzacq X, Shenoy SM, et al. Dynamics of single mRnps in nuclei of living cells. Science. 2004;304:1797–1800.
  • Sassanfar M, Szostak JW. An RNA motif that binds ATP. Nature. 1993;364:550–553.
  • Jellinek D, Green LS, Bell C, et al. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry. 1994;33:10450–10456.
  • Mannironi C, Di Nardo A, Fruscoloni P, et al. In vitro selection of dopamine RNA ligands. Biochemistry. 1997;36:9726–9734.
  • Kiga D, Futamura Y, Sakamoto K, et al. An RNA aptamer to the xanthine/guanine base with a distinctive mode of purine recognition. Nucleic Acids Res. 1998;26:1755–1760.
  • Draper DE. RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys J. 2008;95:5489–5495.
  • Bowman JC, Lenz TK, Hud NV, et al. Cations in charge: magnesium ions in RNA folding and catalysis. Curr Opin Struct Biol. 2012;22:262–272.
  • Romani AM. Magnesium homeostasis in mammalian cells. Met Ions Life Sci. 2013;12:69–118.
  • Grubbs RD. Intracellular magnesium and magnesium buffering. Biometals. 2002;15:251–259.
  • Filonov GS, Song W, Jaffrey SR. Spectral tuning by a single nucleotide controls the fluorescence properties of a fluorogenic aptamer. Biochemistry. 2019;58:1560–1564.
  • Scull CE, Dandpat SS, Romero RA, et al. Transcriptional riboswitches integrate timescales for bacterial gene expression control. Front Mol Biosci. 2020;7:607158.
  • Truong L, Kooshapur H, Dey SK, et al. The fluorescent aptamer squash extensively repurposes the adenine riboswitch fold. Nat Chem Biol. 2022;18:191–198.
  • Moon JD, Wu J, Dey SK, et al. Naturally occurring three-way junctions can be repurposed as genetically encoded RNA-based sensors. Cell Chem Biol. 2021;28:1569–80. e4.
  • Delebecque CJ, Silver PA, Lindner AB. Designing and using RNA scaffolds to assemble proteins in vivo. Nat Protoc. 2012;7:1797–1807.
  • Golden BL, Podell ER, Gooding AR, et al. Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. J Mol Biol. 1997;270:711–723.
  • Ke A, Doudna JA. Crystallization of RNA and RNA-protein complexes. Methods. 2004;34:408–414.
  • Lippa GM, Liberman JA, Jenkins JL, et al. Crystallographic analysis of small ribozymes and riboswitches. Methods Mol Biol. 2012;848:159–184.
  • Reyes FE, Garst AD, Batey RT. Strategies in RNA crystallography. Methods Enzymol. 2009;469:119–139.
  • Ponchon L, Dardel F. Recombinant RNA technology: the tRNA scaffold. Nat Methods. 2007;4:571–576.
  • Mörl M, Marchfelder A. The final cut. EMBO Rep. 2001;2:17–20.
  • Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes & Dev. 2010;24:1832–1860.
  • Wilusz JE, Freier SM, Spector DL. 3′ end processing of a long nuclear-retained noncoding RNA yields a Trna-like cytoplasmic RNA. Cell. 2008;135:919–932.
  • Shu D, Khisamutdinov EF, Zhang L, et al. Programmable folding of fusion RNA in vivo and in vitro driven by pRNA 3WJ motif of phi29 DNA packaging motor. Nucleic Acids Res. 2014;42:e10.
  • Dobrovolskaia MA. Nucleic acid nanoparticles at a crossroads of vaccines and immunotherapies. Molecules. 2019;24:24.
  • Carcache PJB, Guo S, Li H, et al. Regulation of reversible conformational change, size switching, and immunomodulation of RNA nanocubes. RNA. 2021;27:971–980.
  • Zhang X, Potty AS, Jackson GW, et al. Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. J Mol Recognit. 2009;22:154–161.
  • Bouhedda F, Fam KT, Collot M, et al. A dimerization-based fluorogenic dye-aptamer module for RNA imaging in live cells. Nat Chem Biol. 2020;16:69–76.
  • Wu J, Zaccara S, Khuperkar D, et al. Live imaging of mRNA using RNA-stabilized fluorogenic proteins. Nat Methods. 2019;16:862–865.
  • Scheitl CP, Ghaem Maghami M, Lenz A-K, et al. Site-specific RNA methylation by a methyltransferase ribozyme. Nature. 2020;587:663–667.
  • Paige JS, Nguyen-Duc T, Song W, et al. Fluorescence imaging of cellular metabolites with RNA. Science. 2012;335:1194.
  • Song W, Strack RL, Jaffrey SR. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat Methods. 2013;10:873–875.
  • You M, Litke JL, Jaffrey SR. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch. Proc Nat Acad Sci. 2015;112:E2756–65.
  • Soukup GA, Breaker RR. Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. Structure. 1999;7:783–791.
  • English JG, Olsen RHJ, Lansu K, et al. VEGAS as a platform for facile directed evolution in mammalian cells. Cell. 2019;178:748–61.e17.
  • Berman CM, Papa LJ III, Hendel SJ, et al. An adaptable platform for directed evolution in human cells. J Am Chem Soc. 2018;140:18093–18103.
  • Johansson HE, Liljas L, Uhlenbeck OC. RNA recognition by the MS2 phage coat protein. Seminars in VIROLOGY: Elsevier. 1997;8:176–185.
  • Tutucci E, Vera M, Biswas J, et al. An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods. 2018;15:81–89.