1,666
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Impact of phage predation on P. aeruginosa adhered to human airway epithelium: major transcriptomic changes in metabolism and virulence-associated genes

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 235-247 | Accepted 16 May 2023, Published online: 24 May 2023

References

  • Camus L, Briaud P, Vandenesch F, et al. How bacterial adaptation to cystic fibrosis environment shapes interactions between pseudomonas aeruginosa and staphylococcus aureus. Front Microbiol. 2021;12(March):1–16.
  • Pires DP, Vilas Boas D, Sillankorva S, et al. Phage therapy: a step forward in the treatment of pseudomonas aeruginosa infections. J Virol. 2015;89(15):7449–7456.
  • Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of pseudomonas aeruginosa infections: an update. Drugs. 2021;81(18):2117–2131.
  • Alsaadi A, Beamud B, Easwaran M, et al. Learning from mistakes: the role of phages in pandemics. Front Microbiol. 2021;12(March): DOI:10.3389/fmicb.2021.653107.
  • Pires DP, Melo LDR, Vilas Boas D, et al. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol. 2017 Oct;39:48–56. DOI:10.1016/j.mib.2017.09.004.
  • Parmar KM, Gaikwad SL, Dhakephalkar PK, et al. Intriguing interaction of bacteriophage-host association: an understanding in the era of omics. Front Microbiol. 2017;8(APR):559.
  • Chevallereau A, Blasdel BG, De Smet J, et al. Next-generation “-omics” approaches reveal a massive alteration of host RNA metabolism during bacteriophage infection of Pseudomonas aeruginosa. PLoS Genet. 2016 Jul;12(7):1–20.
  • Lood C, Danis‐wlodarczyk K, Blasdel BG, et al. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ Microbiol. 2020;22(6):2165–2181. DOI:10.1111/1462-2920.14979
  • Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020 Mar;18(3):125–138. doi:10.1038/s41579-019-0311-5
  • Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016 Jun;31:161–168. DOI:10.1016/j.mib.2016.04.002.
  • Rosenwasser S, Ziv C, Van Creveld SG, et al. Virocell metabolism: metabolic innovations during host – virus interactions in the ocean. Trends Microbiol. 2016;24(10):821–832.
  • Hendrix H, Kogadeeva M, Zimmermann M, et al. Host metabolic reprogramming of Pseudomonas aeruginosa by phage-based quorum sensing modulation. bioRxiv. 2019;1–40. DOI:10.1101/577908.
  • De Smet J, Zimmermann M, Kogadeeva M, et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. Isme J. 2016;10(8):1823–1835. DOI:10.1038/ismej.2016.3
  • Santos SB, Costa AR, Carvalho C, et al. Exploiting bacteriophage proteomes: the hidden biotechnological potential. Trends Biotechnol. 2018 Sep;36(9):966–984. DOI:10.1016/j.tibtech.2018.04.006
  • Lavigne R, Lecoutere E, Wagemans J, et al. A multifaceted study of pseudomonas aeruginosa shutdown by virulent podovirus LUZ19. MBio. 2013 Jan;4(2):1–13.
  • Brandão A, Pires DP, Coppens L, et al. Differential transcription profiling of the phage LUZ19 infection process in different growth media. RNA Biol. 2021;18(11):1–13.
  • Wicke L, Ponath F, Coppens L, et al. Introducing differential RNA-seq mapping to track the early infection phase for Pseudomonas phage ɸKZ. RNA Biol. 2020;18(8):1099–1110.
  • Shah M, Taylor VL, Bona D, et al. A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Mol Cell. 2021;81(3):571–583.e6. DOI:10.1016/j.molcel.2020.12.011
  • Zhao X, Chen C, Jiang X, et al. Transcriptomic and metabolomic analysis revealed multifaceted effects of phage protein Gp70.1 on Pseudomonas aeruginosa. Front Microbiol. 2016;7:1–14.
  • Zhong Q, Yang L, Li L, et al. Transcriptomic analysis reveals the dependency of pseudomonas aeruginosa genes for double-stranded RNA bacteriophage phiYY infection cycle. iScience. 2020;23(9):101437. DOI:10.1016/j.isci.2020.101437
  • Zhao X, Shen M, Jiang X, et al. Transcriptomic and metabolomics profiling of phage–host interactions between phage PaP1 and Pseudomonas aeruginosa. Front Microbiol. 2017;8(MAR):1–10. DOI:10.3389/fmicb.2017.00548
  • Blasdel BG, Ceyssens P-J-J, Chevallereau A, et al. Comparative transcriptomics reveals a conserved bacterial adaptive phage response (BAPR) to viral predation. bioRxiv. 2018;248849. DOI:10.1101/248849
  • Blasdel BG, Chevallereau A, Monot M, et al. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. Isme J. 2017;11(9):1988–1996.
  • Zhao X, Chen C, Shen W, et al. Global transcriptomic analysis of interactions between Pseudomonas aeruginosa and bacteriophage PaP3. Sci Rep. 2016;6(1):1–12. DOI:10.1038/srep19237
  • Gerovac M, Wicke L, Chihara K, et al. A grad-seq view of RNA and protein complexes in pseudomonas aeruginosa under standard and bacteriophage predation conditions. MBio. 2021;12(1). DOI:10.1128/mBio.03454-20
  • Putzeys L, Boon M, Lammens E-M, et al. Development of ONT-cappable-seq to unravel the transcriptional landscape of pseudomonas phages. Comput Struct Biotechnol J. 2022;20:2624–2638.
  • Kordes A, Preusse M, Willger SD, et al. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun. 2019;10(1). DOI:10.1038/s41467-019-11414-3.
  • Rossi E, Falcone M, Molin S, et al. High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat Commun. 2018;9(1):1–13.
  • Damron FH, Oglesby-Sherrouse AG, Wilks A, et al. Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Sci Rep. 2016;6(1):1–12.
  • Kumar SS, Tandberg JI, Penesyan A, et al. Dual transcriptomics of host-pathogen interaction of cystic fibrosis isolate pseudomonas aeruginosa PASS1 with Zebrafish. Front Cell Infect Microbiol. 2018;8(November):1–15. DOI:10.3389/fcimb.2018.00406
  • Lammens E, Ceyssens PJ, Voet M, et al. Representational difference analysis (RDA) of bacteriophage genomes. J Microbiol Methods. 2009;77(2):207–213.
  • Ceyssens PJ, Mesyanzhinov V, Sykilinda N, et al. The genome and structural proteome of YuA, a new Pseudomonas aeruginosa phage resembling M6. J Bacteriol. 2008;190(4):1429–1435. DOI:10.1128/JB.01441-07
  • Azeredo J, Sillankorva S, Pires DP. Pseudomonas bacteriophage isolation and production. In: Filloux A Ramos J-L, editors. Pseudomonas methods and protocols: methods in molecular biology. Vol. 1149. New York: Humana Press; 2014. pp. 23–32.
  • Andrews S. FastQC a quality control tool for high throughput sequence data. Babraham Bioinformatics, 2010. [cited 2020 Apr 23]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014 Aug;30(15):2114–2120.
  • Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010 Mar;26(5):589–595. DOI:10.1093/bioinformatics/btp698
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009 Aug;25(16):2078–2079.
  • Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930.
  • Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–192.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21.
  • Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile takeover: how viruses reprogram prokaryotic metabolism. Annu Rev Microbiol. 2021;75(1):515–539.
  • Kieft K, Breister AM, Huss P, et al. Article virus-associated organosulfur metabolism in human and environmental systems ll ll virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 2021;36(5):109471. DOI:10.1016/j.celrep.2021.109471
  • Mangalea MR, Duerkop BA. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infection and Immunity. 2020; 88: DOI:10.1128/IAI.00926-19.
  • Periasamy S, Nair HAS, Lee KWK, et al. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance. Front Microbiol. 2015;6(AUG):1–10. DOI:10.3389/fmicb.2015.00851
  • Chung IY, Kim B-O, Han J-H, et al. A phage protein-derived antipathogenic peptide that targets type IV pilus assembly. Virulence. 2021;12(1):1377–1387. DOI:10.1080/21505594.2021.1926411
  • Daniels JB, Scoffield J, Woolnough JL, et al. Impact of glycerol-3-phosphate dehydrogenase on virulence factor production by Pseudomonas aeruginosa. Can J Microbiol. 2014;60(12):857–863.
  • Tralau T, Vuilleumier S, Thibault C, et al. Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa. J Bacteriol. 2007;189(19):6743–6750.
  • Wagemans J, Blasdel BG, Van den Bossche A, et al. Functional elucidation of antibacterial phage ORFans targeting Pseudomonas aeruginosa. Cell Microbiol. 2014;16(12):1822–1835. DOI:10.1111/cmi.12330
  • Ames BN, Dubin DT, Rosenthal SM. Presence of polyamines in certain bacterial viruses. Science. 1958 Apr;127(3302):814 LP–816. doi:10.1126/science.127.3302.814.b
  • Yu T-Y, Schaefer J. REDOR NMR characterization of DNA packaging in bacteriophage T4. J Mol Biol. 2008 Oct;382(4):1031–1042. DOI:10.1016/j.jmb.2008.07.077
  • Firpo MR, Mounce BC. Diverse functions of polyamines in viruses infection. Biomolecules. 2020;10(4):628.
  • Gutu AD, Rodgers NS, Park J, et al. Pseudomonas aeruginosa high-level resistance to polymyxins and other antimicrobial peptides requires cprA, a gene that is disrupted in the PAO1 strain. Antimicrob Agents Chemother. 2015;59(9):5377–5387.
  • Adamiak JW, Jhawar V, Bonifay V, et al. Loss of RND-Type multidrug efflux pumps triggers iron starvation and lipid a modifications in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2021;65(10):2021. DOI:10.1128/AAC.00592-21
  • Breazeale SD, Ribeiro AA, Mcclerren AL, et al. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid a with 4-Amino-4-deoxy- L -arabinose. J Biol Chem. 2005;280(14):14154–14167.
  • Nairz M, Schroll A, Sonnweber T, et al. The struggle for iron - a metal at the host-pathogen interface. Cell Microbiol. 2010;12(12):1691–1702.
  • Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7(FEB): DOI:10.3389/fcimb.2017.00039
  • Penner JC, Ferreira JAG, Secor PR, et al. Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration. Microbiology. 2016;162(9):1583–1594. DOI:10.1099/mic.0.000344
  • Bonnain C, Breitbart M, Buck KN. The ferrojan horse hypothesis: iron-virus interactions in the ocean. Front Mar Sci. 2016;3: [Online]. DOI:10.3389/fmars.2016.00082
  • Browning C, Shneider MM, Bowman VD, et al. Phage pierces the host cell membrane with the iron-loaded spike. Structure. 2012;20(2):326–339.
  • Minandri F, Imperi F, Frangipani E, et al. Role of iron uptake systems in pseudomonas aeruginosa virulence and airway infection. Infect Immun. 2016;84(8):2324–2335. DOI:10.1128/IAI.00098-16
  • Sultan M, Arya R, Kim KK. Roles of two-component systems in pseudomonas aeruginosa virulence. Int J Mol Sci. 2021;22(22):12152.
  • Jakobsen TH, Warming AN, Vejborg RM, et al. A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep. 2017;7(1):1–12. DOI:10.1038/s41598-017-09886-8
  • Burrowes E, Baysse C, Adams C, et al. Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology. 2006;152(2):405–418.
  • Murray TS, Kazmierczak BI. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol. 2008;190(8):2700–2708.
  • Zhang X, Yin L, Liu Q, et al. NrtR mediated regulation of H1-T6SS in Pseudomonas aeruginosa. Microbiol Spectr. 2022;10(1):1–14. DOI:10.1128/spectrum.01858-21
  • Chen R, Weng Y, Zhu F, et al. Polynucleotide phosphorylase regulates multiple virulence factors and the stabilities of small RNAs RsmY/Z in Pseudomonas aeruginosa. Front Microbiol. 2016;7(MAR):1–12. DOI:10.3389/fmicb.2016.00247
  • Liu W, Li M, Jiao L, et al. PmrA/PmrB two-component system regulation of lipA expression in Pseudomonas aeruginosa PAO1. Front Microbiol. 2018;8(JAN):1–13.
  • McMackin WAW, Marsden AE, Yahr TL. H-NS family members MvaT and MvaU regulate the Pseudomonas aeruginosa type III secretion system. J Bacteriol. 2019;201(14). DOI:10.1128/JB.00054-19
  • Li Y, Liu X, Tang K, et al. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol. 2019;111(2):495–513. DOI:10.1111/mmi.14170
  • Li C, Wally H, Miller SJ, et al. The multifaceted proteins MvaT and MvaU, members of the H-NS family, control arginine metabolism, pyocyanin synthesis, and prophage activation in Pseudomonas aeruginosa PAO1. J Bacteriol. 2009;191(20):6211–6218.
  • Shen DK, Filopon D, Chaker H, et al. High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites. Microbiology. 2008;154(8):2195–2208. DOI:10.1099/mic.0.2007/013680-0
  • Wagemans J, Delattre A-S, Uytterhoeven B, et al. Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT inhibiting protein. Front Microbiol. 2015;6. DOI:10.3389/fmicb.2015.01242.