1,359
Views
4
CrossRef citations to date
0
Altmetric
Review

Implications of LncRNAs and CircRNAs in psoriasis: a review

, , , , , & show all
Pages 334-347 | Accepted 05 Jun 2023, Published online: 13 Jun 2023

References

  • Egeberg A, Ottosen MB, Gniadecki R, et al. Safety, efficacy and drug survival of biologics and biosimilars for moderate-to-severe plaque psoriasis. Br J Dermatol. 2018;178(2):509–519. DOI:10.1111/bjd.16102
  • Nair RP, Duffin KC, Helms C, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41(2):199–204. DOI:10.1038/ng.311
  • Strange A, Capon F, Spencer CC, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42(11):985–990.
  • Dand N, Mahil SK, Capon F, et al. Psoriasis and Genetics. Acta Derm Venereol. 2020;100(3):adv00030. doi:10.2340/00015555-3384.
  • Ogawa K, Okada Y. The current landscape of psoriasis genetics in 2020. J Dermatol Sci. 2020;99(1):2–8. doi:10.1016/j.jdermsci.2020.05.008.
  • International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–945. DOI:10.1038/nature03001
  • Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–108. DOI:10.1038/nature11233
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–874. doi:10.1038/nrg3074.
  • Furrow RE, Christiansen FB, Feldman MW. Environment-sensitive epigenetics and the heritability of complex diseases. Genetics. 2011;189(4):1377–1387. doi:10.1534/genetics.111.131912.
  • Dopytalska K, Ciechanowicz P, Wiszniewski K, et al. The Role of Epigenetic Factors in Psoriasis. Int J Mol Sci. 2021;22(17):9294. DOI:10.3390/ijms22179294
  • Pollock RA, Abji F, Gladman DD. Epigenetics of psoriatic disease: a systematic review and critical appraisal. J Autoimmun. 2017;78:29–38. doi: 10.1016/j.jaut.2016.12.002
  • Chandra A, Ray A, Senapati S, et al. Genetic and epigenetic basis of psoriasis pathogenesis. Mol Immunol. 2015;64(2):313–323. DOI:10.1016/j.molimm.2014.12.014
  • Lee JH, Gao C, Peng G, et al. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circ Res. 2011;109(12):1332–1341. DOI:10.1161/CIRCRESAHA.111.249433
  • Tsoi LC, Iyer MK, Stuart PE, et al. Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol. 2015;16(1):24. DOI:10.1186/s13059-014-0570-4
  • Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRnas in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206. DOI:10.1038/s41571-021-00585-y
  • Knupp D, Cooper DA, Saito Y, et al. NOVA2 regulates neural circRNA biogenesis. Nucleic Acids Res. 2021;49(12):6849–6862. DOI:10.1093/nar/gkab523
  • Lodde V, Murgia G, Simula ER, et al. Long noncoding RNAs and circular RNAs in autoimmune diseases. Biomolecules. 2020;10(7):1044. doi:10.3390/biom10071044.
  • Moldovan LI, Tsoi LC, Ranjitha U, et al. Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals disease-specific expression profiles. Exp Dermatol. 2021;30(8):1187–1196. DOI:10.1111/exd.14227
  • Qiao M, Ding J, Yan J, et al. Circular RNA expression profile and analysis of their potential function in psoriasis. Cell Physiol Biochem. 2018;50(1):15–27. DOI:10.1159/000493952
  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–159. doi:10.1038/nrg2521.
  • Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol. 2014;6(2):a018382–a018382. doi:10.1101/cshperspect.a018382.
  • Brown CJ, Ballabio A, Rupert JL, et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991;349(6304):38–44. DOI:10.1038/349038a0
  • Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature. 2002;415(6873):810–813. doi:10.1038/415810a.
  • Lewandowski JP, Lee JC, Hwang T, et al. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat Commun. 2019;10(1):5137. DOI:10.1038/s41467-019-12970-4
  • Naganuma T, Nakagawa S, Tanigawa A, et al. Alternative 3’-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. Embo J. 2012;31(20):4020–4034. doi:10.1038/emboj.2012.251.
  • Li C, Wang Z, Zhang J, et al. Crosstalk of mRNA, miRNA, lncRNA, and circRNA and their regulatory pattern in pulmonary fibrosis. Mol Ther Nucleic Acids. 2019;18:204–218. DOI:10.1016/j.omtn.2019.08.018.
  • Wu DM, Wang S, Wen X, et al. LncRNA SNHG15 acts as a ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma. Cell Death Dis. 2018;9(10):947. DOI:10.1038/s41419-018-0975-1
  • Wang X, Arai S, Song X, et al. Induced ncRnas allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454(7200):126–130. DOI:10.1038/nature06992
  • Chen LL, Carmichael GG. Altered nuclear retention of mRnas containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell. 2009;35(4):467–478. doi:10.1016/j.molcel.2009.06.027.
  • Lee J, Wu Y, Harada BT, et al. N(6) -methyladenosine modification of lncRNA Pvt1 governs epidermal stemness. Embo J. 2021;40(8):e106276. DOI:10.15252/embj.2020106276
  • Li D, Kular L, Vij M, et al. Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration. Proc Natl Acad Sci U S A. 2019;116(19):9443–9452. DOI:10.1073/pnas.1814097116
  • Shefler A, Patrick MT, Wasikowski R, et al. Skin-expressing lncRnas in inflammatory responses. Front Genet. 2022;13:835740. DOI:10.3389/fgene.2022.835740.
  • Gupta R, Ahn R, Lai K, et al. Landscape of long noncoding RNAs in psoriatic and healthy skin. J Invest Dermatol. 2016;136(3):603–609. DOI:10.1016/j.jid.2015.12.009
  • Yu Z, Gong Y, Cui L, et al. High-throughput transcriptome and pathogenesis analysis of clinical psoriasis. J Dermatol Sci. 2020;98(2):109–118. DOI:10.1016/j.jdermsci.2020.03.006
  • Li H, Yang C, Zhang J, et al. Identification of potential key mRnas and LncRNAs for psoriasis by bioinformatic analysis using weighted gene co-expression network analysis. Mol Genet Genomics. 2020;295(3):741–749. DOI:10.1007/s00438-020-01654-0
  • Qiao M, Li R, Zhao X, et al. Up-regulated lncRNA-MSX2P1 promotes the growth of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p and activating S100A7. Exp Cell Res. 2018;363(2):243–254. DOI:10.1016/j.yexcr.2018.01.014
  • Luo M, Huang P, Pan Y, et al. Weighted gene coexpression network and experimental analyses identify lncRNA SPRR2C as a regulator of the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. Cell Death Dis. 2021;12(1):86. DOI:10.1038/s41419-020-03305-z
  • Ahn R, Gupta R, Lai K, et al. Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs. BMC Genomics. 2016;17(1):841. DOI:10.1186/s12864-016-3188-y
  • Danis J, Göblös A, Bata-Csörgő Z, et al. PRINS non-coding RNA regulates nucleic acid-induced innate immune responses of human keratinocytes. Front Immunol. 2017;8:1053. DOI:10.3389/fimmu.2017.01053.
  • Szegedi K, Sonkoly E, Nagy N, et al. The anti-apoptotic protein G1P3 is overexpressed in psoriasis and regulated by the non-coding RNA, PRINS. Exp Dermatol. 2010;19(3):269–278. DOI:10.1111/j.1600-0625.2010.01066.x
  • Gao J, Chen F, Hua M, et al. Knockdown of lncRNA MIR31HG inhibits cell proliferation in human HaCaT keratinocytes. Biol Res. 2018;51(1):30. DOI:10.1186/s40659-018-0181-8
  • Yin X, Yang Z, Zhu M, et al. ILF2 contributes to hyperproliferation of keratinocytes and skin inflammation in a KLHDC7B-DT-dependent manner in psoriasis. Front Genet. 2022;13:890624. DOI:10.3389/fgene.2022.890624.
  • Duan Q, Wang G, Wang M, et al. LncRNA RP6-65G23.1 accelerates proliferation and inhibits apoptosis via p-ERK1/2/p-AKT signaling pathway on keratinocytes. J Cell Biochem. 2020;121(11):4580–4589. DOI:10.1002/jcb.29685
  • Zhao G, Su Z, Song D, et al. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-κB. FEBS Lett. 2016;590(17):2884–2895. DOI:10.1002/1873-3468.12315
  • Wu J, Zhang H, Zheng Y, et al. The long noncoding RNA MALAT1 induces tolerogenic dendritic cells and regulatory T cells via miR155/Dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin/IL10 Axis. Front Immunol. 2018;9:1847. DOI:10.3389/fimmu.2018.01847.
  • Huang S, Zhen Y, Yin X, et al. KMT2C induced by FABP5P3 aggravates keratinocyte hyperproliferation and psoriasiform skin inflammation by upregulating the transcription of PIK3R3. J Invest Dermatol. 2022;143(1):37–47.e8. DOI:10.1016/j.jid.2022.06.025
  • Xian J, Shang M, Dai Y, et al. N(6)-methyladenosine-modified long non-coding RNA AGAP2-AS1 promotes psoriasis pathogenesis via miR-424-5p/AKT3 axis. J Dermatol Sci. 2022;105(1):27–36. DOI:10.1016/j.jdermsci.2021.11.007
  • Yan J, Song J, Qiao M, et al. Long noncoding RNA expression profile and functional analysis in psoriasis. Mol Med Rep. 2019;19(5):3421–3430. DOI:10.3892/mmr.2019.9993
  • Cai P, Otten ABC, Cheng B, et al. A genome-wide long noncoding RNA CRISPRi screen identifies PRANCR as a novel regulator of epidermal homeostasis. Genome Res. 2020;30(1):22–34. DOI:10.1101/gr.251561.119
  • Ziegler C, Graf J, Faderl S, et al. The long non-coding RNA LINC00941 and SPRR5 are novel regulators of human epidermal homeostasis. EMBO Rep. 2019;20(2). 10.15252/embr.201846612
  • He Y, Yin X, Yan J, et al. The lncRNA H19/miR-766-3p/S1PR3 axis contributes to the hyperproliferation of keratinocytes and skin inflammation in psoriasis via the AKT/mTOR pathway. Mediators Inflamm. 2021;2021:1–11. doi: 10.1155/2021/9991175
  • Jia HY, Zhang K, Lu WJ, et al. LncRNA MEG3 influences the proliferation and apoptosis of psoriasis epidermal cells by targeting miR-21/caspase-8. BMC Mol And Cell Biol. 2019;20(1):46. doi:10.1186/s12860-019-0229-9.
  • Sonkoly E, Bata-Csorgo Z, Pivarcsi A, et al. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. J Biol Chem. 2005;280(25):24159–24167. DOI:10.1074/jbc.M501704200
  • Ellinghaus E, Ellinghaus D, Stuart PE, et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet. 2010;42(11):991–995. DOI:10.1038/ng.689
  • He R, Wu S, Gao R, et al. Identification of a long noncoding RNA TRAF3IP2-AS1 as key regulator of IL-17 signaling through the SRSF10-IRF1-Act1 Axis in autoimmune diseases. J Immunol. 2021;206(10):2353–2365. DOI:10.4049/jimmunol.2001223
  • Yao X, Hao S, Xue T, et al. Association of HOTAIR polymorphisms with susceptibility to psoriasis in a Chinese Han Population. BioMed Res Int. 2021;2021:1–5. doi: 10.1155/2021/5522075
  • Qu X, Alsager S, Zhuo Y, et al. HOX transcript antisense RNA (HOTAIR) in cancer. Cancer Lett. 2019;454:90–97. DOI:10.1016/j.canlet.2019.04.016.
  • Harismendy O, Notani D, Song X, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature. 2011;470(7333):264–268. DOI:10.1038/nature09753
  • Rezazadeh M, Gharesouran J, Moradi M, et al. Association study of ANRIL genetic variants and multiple sclerosis. J Mol Neurosci. 2018;65(1):54–59. DOI:10.1007/s12031-018-1069-3
  • Rakhshan A, Zarrinpour N, Moradi A, et al. Genetic variants within ANRIL (antisense non coding RNA in the INK4 locus) are associated with risk of psoriasis. Int Immunopharmacol. 2020;78:106053. DOI:10.1016/j.intimp.2019.106053.
  • Zhou X, Han X, Wittfeldt A, et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol. 2016;13(1):98–108. DOI:10.1080/15476286.2015.1122164
  • Rakhshan A, Zarrinpour N, Moradi A, et al. A single nucleotide polymorphism within HOX Transcript Antisense RNA (HOTAIR) is associated with risk of psoriasis. Int J Immunogenet. 2020;47(5):430–434. DOI:10.1111/iji.12482
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi:10.1016/j.cell.2010.01.022.
  • Black AP, Ardern-Jones MR, Kasprowicz V, et al. Human keratinocyte induction of rapid effector function in antigen-specific memory CD4+ and CD8+ T cells. Eur J Immunol. 2007;37(6):1485–1493. DOI:10.1002/eji.200636915
  • Yang H, Liu P, Zhang J, et al. Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene. 2016;35(28):3647–3657. DOI:10.1038/onc.2015.430
  • Wang Y, Cao Y. MiR-145-5p inhibits psoriasis progression by regulating the Wnt/β-catenin pathway. Am J Transl Res. 2021;13(9):10439–10448.
  • Korman NJ. Management of psoriasis as a systemic disease: what is the evidence? Br J Dermatol. 2020;182(4):840–848. doi:10.1111/bjd.18245.
  • Tang ZL, Zhang K, Lv SC, et al. LncRNA MEG3 suppresses PI3K/AKT/mTOR signalling pathway to enhance autophagy and inhibit inflammation in TNF-alpha-treated keratinocytes and psoriatic mice. Cytokine. 2021;148:155657. doi: 10.1016/j.cyto.2021.155657
  • Fan F, Huang Z, Chen Y. Integrated analysis of immune-related long noncoding RNAs as diagnostic biomarkers in psoriasis. PeerJ. 2021;9:e11018. doi: 10.7717/peerj.11018
  • Obaid M, Udden SMN, Deb P, et al. LncRNA HOTAIR regulates lipopolysaccharide-induced cytokine expression and inflammatory response in macrophages. Sci Rep. 2018;8(1):15670. DOI:10.1038/s41598-018-33722-2
  • Puthanveetil P, Chen S, Feng B, et al. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med. 2015;19(6):1418–1425. DOI:10.1111/jcmm.12576
  • Hosszu KK, Valentino A, Vinayagasundaram U, et al. DC-SIGN, C1q, and gC1qr form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells. Blood. 2012;120(6):1228–1236. DOI:10.1182/blood-2011-07-369728
  • Zemmour D, Pratama A, Loughhead SM, et al. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc Natl Acad Sci U S A. 2017;114(17):E3472–e80. DOI:10.1073/pnas.1700946114
  • Luo J, Liu T, Teng W. LncRNA profile in Hashimoto’s thyroiditis and potential function of NONHSAT079547.2. J Mol Endocrinol. 2020;64(4):259–270. doi:10.1530/JME-19-0239.
  • Upala S, Shahnawaz A, Sanguankeo A. Psoriasis increases risk of new-onset atrial fibrillation: a systematic review and meta-analysis of prospective observational studies. J DermatolTreat. 2016;28(5):1–20. doi:10.1080/09546634.2016.1255703.
  • Samarasekera EJ, Neilson JM, Warren RB, et al. Incidence of cardiovascular disease in individuals with psoriasis: a systematic review and meta-analysis. J Invest Dermatol. 2013;133(10):2340–2346. DOI:10.1038/jid.2013.149
  • Dinić M, Zečević RD, Hajduković Z, et al. Psoriasis is the independent factor for early atherosclerosis: a prospective study of cardiometabolic risk profile. Vojnosanit Pregl. 2016;73(12):1094–1101. DOI:10.2298/VSP150510134D
  • Patrick MT, Li Q, Wasikowski R, et al. Shared genetic risk factors and causal association between psoriasis and coronary artery disease. Nat Commun. 2022;13(1):6565. DOI:10.1038/s41467-022-34323-4
  • Piaserico S, Orlando G, Messina F. Psoriasis and cardiometabolic diseases: shared genetic and molecular pathways. Int J Mol Sci. 2022;23(16):9063. doi:10.3390/ijms23169063.
  • Wang J, Cao B, Han D, et al. Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis. 2017;8(1):71–84. doi:10.14336/AD.2016.0530.
  • Wang J, Zhao H, Fan Z, et al. Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke. 2017;48(8):2211–2221. DOI:10.1161/STROKEAHA.117.017387
  • Ottaviani L, Juni RP, de Abreu RC, et al. Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Mol Ther. 2022;30(6):2257–2273. DOI:10.1016/j.ymthe.2022.03.002
  • Juni RP, Kuster DWD, Goebel M, et al. Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. JACC Basic Transl Sci. 2019;4(5):575–591. DOI:10.1016/j.jacbts.2019.04.003
  • Busscher D, Boon RA, Juni RP. The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin Sci (Lond). 2022;136(15):1157–1178. doi:10.1042/CS20210994.
  • Divoux A, Karastergiou K, Xie H, et al. Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation. Obesity. 2014;22(8):1781–1785. DOI:10.1002/oby.20793
  • Nye MD, King KE, Darrah TH, et al. Maternal blood lead concentrations, DNA methylation of MEG3 DMR regulating the DLK1/MEG3 imprinted domain and early growth in a multiethnic cohort. Environ Epigenet. 2016;2(1). 10.1093/eep/dvv009
  • Shi C, Wu L, Li L. LncRNA-MALAT 1 regulates cardiomyocyte scorching in diabetic cardiomyopathy by targeting NLRP3. Cell Mol Biol (Noisy-le-Grand). 2022;67(6):213–219. doi:10.14715/cmb/2021.67.6.28.
  • Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185(12):2016–2034. doi:10.1016/j.cell.2022.04.021.
  • Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–490. doi:10.1038/s41580-020-0243-y.
  • Xiao MS, Ai Y, Wilusz JE. Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol. 2020;30(3):226–240. doi:10.1016/j.tcb.2019.12.004.
  • Luan W, Shi Y, Zhou Z, et al. circRNA_0084043 promote malignant melanoma progression via miR-153-3p/Snail axis. Biochem Biophys Res Commun. 2018;502(1):22–29. DOI:10.1016/j.bbrc.2018.05.114
  • Wang Q, Chen J, Wang A, et al. Differentially expressed circRnas in melanocytes and melanoma cells and their effect on cell proliferation and invasion. Oncol Rep. 2018;39(4):1813–1824. DOI:10.3892/or.2018.6263
  • Liu R, Wang Q, Chang W, et al. Characterisation of the circular RNA landscape in mesenchymal stem cells from psoriatic skin lesions. Eur J Dermatol. 2019;29(1):29–38. DOI:10.1684/ejd.2018.3483
  • Chen L, Li J, Li Q, et al. Non-coding RNAs: the new insight on hypertrophic scar. J Cell Biochem. 2017;118(8):1965–1968. DOI:10.1002/jcb.25873
  • Li M, Wang J, Liu D, et al. Highthroughput sequencing reveals differentially expressed lncRnas and circRnas, and their associated functional network, in human hypertrophic scars. Mol Med Rep. 2018;18(6):5669–5682. doi:10.3892/mmr.2018.9557.
  • Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15(7):409. doi:10.1186/s13059-014-0409-z.
  • Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51(6):792–806. DOI:10.1016/j.molcel.2013.08.017
  • Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–264. DOI:10.1038/nsmb.2959
  • Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep. 2015;10(1):103–111. DOI:10.1016/j.celrep.2014.12.002
  • Liang D, Tatomer DC, Luo Z, et al. The output of protein-coding genes shifts to Circular RNAs when the pre-mrna processing machinery is limiting. Mol Cell. 2017;68(5):940–54 e3. DOI:10.1016/j.molcel.2017.10.034
  • Kristensen LS, Okholm TLH, Veno MT, et al. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 2018;15(2):280–291. DOI:10.1080/15476286.2017.1409931
  • Gu Y, Ci C, Zhang X, et al. Prediction of circRnas based on the DNA methylation-mediated feature sponge function in breast cancer. Front Bioeng Biotechnol. 2019;7:365. DOI:10.3389/fbioe.2019.00365.
  • Davie JR, Xu W, Delcuve GP. Histone H3K4 trimethylation: dynamic interplay with pre-Mrna splicing. Biochem Cell Biol. 2016;94(1):1–11. doi:10.1139/bcb-2015-0065.
  • Wang X, Ma R, Shi W, et al. Emerging roles of circular RNAs in systemic lupus erythematosus. Mol Ther Nucleic Acids. 2021;24:212–222. DOI:10.1016/j.omtn.2021.02.028.
  • Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–691. DOI:10.1038/s41576-019-0158-7
  • Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19(1):172. DOI:10.1186/s12943-020-01286-3
  • Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–358. DOI:10.1016/j.cell.2011.07.014
  • Rossi F, Beltran M, Damizia M, et al. Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Mol Cell. 2022;82(1):75–89 e9. DOI:10.1016/j.molcel.2021.11.032
  • Zang J, Lu D, Xu A. The interaction of circRnas and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res. 2020;98(1):87–97. doi:10.1002/jnr.24356.
  • Wang X, Ma R, Zhang X, et al. Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions. Mol Cancer. 2021;20(1):121. DOI:10.1186/s12943-021-01415-6
  • Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66(1):22–37 e9. DOI:10.1016/j.molcel.2017.02.017
  • Chen CK, Cheng R, Demeter J, et al. Structured elements drive extensive circular RNA translation. Mol Cell. 2021;81(20):4300–18 e13. DOI:10.1016/j.molcel.2021.07.042
  • Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27(5):626–641. DOI:10.1038/cr.2017.31
  • Li S, Li Y, Chen B, et al. exoRbase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46(D1):D106–D12. DOI:10.1093/nar/gkx891
  • Chen X, Yang T, Wang W, et al. Circular RNAs in immune responses and immune diseases. Theranostics. 2019;9(2):588–607. DOI:10.7150/thno.29678
  • Ashrafizadeh M, Zarrabi A, Mostafavi E, et al. Non-coding RNA-based regulation of inflammation. Semin Immunol. 2022;59:101606. DOI:10.1016/j.smim.2022.101606.
  • He Q, Liu N, Hu F, et al. Circ_0061012 contributes to IL-22-induced proliferation, migration and invasion in keratinocytes through miR-194-5p/GAB1 axis in psoriasis. Biosci Rep. 2021;41(1). 10.1042/BSR20203130
  • Liu X, Frost J, Bowcock A, et al. Canonical and interior circular RNAs function as competing endogenous RNAs in psoriatic skin. Int J Mol Sci. 2021;22(10):5182. DOI:10.3390/ijms22105182
  • Moldovan LI, Hansen TB, Veno MT, et al. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRnaome. BMC Med Genomics. 2019;12(1):174. DOI:10.1186/s12920-019-0616-2
  • Enuka Y, Lauriola M, Feldman ME, et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44(3):1370–1383. DOI:10.1093/nar/gkv1367
  • Zhang M, Han M, Li J, et al. Hsa_circ_0056856 in the serum serves as a potential novel biomarker for disease activity in psoriasis. Chin Med J (Engl). 2022;135(14):1759–1761. DOI:10.1097/CM9.0000000000002166
  • Yang L, Zhang C, Bai X, et al. Hsa_circ_0003738 Inhibits the suppressive function of tregs by targeting miR-562/IL-17A and miR-490-5p/IFN-gamma signaling pathway. Mol Ther Nucleic Acids. 2020;21:1111–1119. doi: 10.1016/j.omtn.2020.08.001
  • Liu R, Chang W, Li J, et al. Mesenchymal stem cells in psoriatic lesions affect the skin microenvironment through circular RNA. Exp Dermatol. 2019;28(3):292–299. DOI:10.1111/exd.13890
  • Lu J, Xu X, Li Y, et al. CircRAB3B suppresses proliferation, motility, cell cycle progression and promotes the apoptosis of IL-22-induced keratinocytes depending on the regulation of miR-1228-3p/PTEN axis in psoriasis. Autoimmunity. 2021;54(5):303–312. doi:10.1080/08916934.2021.1934825.
  • Fang Y, C E, Wu S, et al. Circ-IGF1R plays a significant role in psoriasis via regulation of a miR-194-5p/CDK1 axis. Cytotechnology. 2021;73(6):775–785. doi:10.1007/s10616-021-00496-x.
  • Shi Q, Luo J, Chen W, et al. Circ_0060531 knockdown ameliorates IL-22-induced keratinocyte damage by binding to miR-330-5p to decrease GAB1 expression. Autoimmunity. 2022;55(4):243–253. doi:10.1080/08916934.2022.2037127.
  • Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol. 2021;184(1):14–24. doi:10.1111/bjd.19380.
  • Yang L, Fu J, Han X, et al. Hsa_circ_0004287 inhibits macrophage-mediated inflammation in an N(6)-methyladenosine-dependent manner in atopic dermatitis and psoriasis. J Allergy Clin Immunol. 2022;149(6):2021–2033. DOI:10.1016/j.jaci.2021.11.024
  • Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–295. DOI:10.1038/s41556-018-0045-z
  • Liu P, Zhang B, Chen Z, et al. M(6)a-induced lncRNA MALAT1 aggravates renal fibrogenesis in obstructive nephropathy through the miR-145/FAK pathway. Aging. 2020;12(6):5280–5299. DOI:10.18632/aging.102950
  • Yang L, Zhang C, Bai X, et al. Hsa_circ_0003738 Inhibits the suppressive function of tregs by targeting miR-562/IL-17A and miR-490-5p/IFN-γ signaling pathway. Mol Ther Nucleic Acids. 2020;21:1111–1119. DOI:10.1016/j.omtn.2020.08.001.
  • Wang J, Zhu S, Meng N, et al. NcRNA-Encoded peptides or proteins and cancer. Mol Ther. 2019;27(10):1718–1725. DOI:10.1016/j.ymthe.2019.09.001
  • Pan J, Meng X, Jiang N, et al. Insights into the noncoding RNA-encoded peptides. Protein Pept Lett. 2018;25(8):720–727. DOI:10.2174/0929866525666180809142326