3,920
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

RNA origami: design, simulation and application

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 510-524 | Accepted 12 Jul 2023, Published online: 27 Jul 2023

References

  • Guerrier-Takada C, Gardiner K, Marsh T, et al. The RNA moiety of ribonuclease p is the catalytic subunit of the enzyme. Cell. 1983;35(3):849–857. doi: 10.1016/0092-8674(83)90117-4
  • Kruger K, Grabowski PJ, Zaug AJ, et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell. 1982;31(1):147–157. doi: 10.1016/0092-8674(82)90414-7
  • Zaug AJ, Been MD, Cech TR. The tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature. 1986;324(6096):429–433. doi: 10.1038/324429a0
  • Koizumi M, Iwai S, Ohtsuka E. Cleavage of specific sites of RNA by designed ribozymes. FEBS Lett. 1988;239(2):285–288. doi: 10.1016/0014-5793(88)80935-9
  • Chen J, Seeman NC. Synthesis from DNA of a molecule with the connectivity of a cube. Nature. 1991;350(6319):631–633. doi: 10.1038/350631a0
  • Seeman NC. Nucleic acid junctions and lattices. J Theor Biol. 1982;99(2):237–247. doi: 10.1016/0022-5193(82)90002-9
  • Seeman NC. The design of single-stranded nucleic acid knots. Mol Eng. 1992;2(3):297–307. doi: 10.1007/BF00999532
  • Wang H, Di Gate RJ, Seeman NC. An RNA topoisomerase. Proc Natl Acad Sci, USA. 1996;93(18):9477–9482. doi: 10.1073/pnas.93.18.9477
  • Westhof E, Masquida B, Jaeger L. RNA tectonics: towards RNA design. Folding And Design. 1996;1(4):R78–R88. doi: 10.1016/S1359-0278(96)00037-5
  • Jaeger L, Wright MC, Joyce GF. A complex ligase ribozyme evolved in vitro from a group i ribozyme domain. Proc Natl Acad Sci, USA. 1999;96(26):14712–14717. doi: 10.1073/pnas.96.26.14712
  • Jaeger L, Westhof E, Leontis NB. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res. 2001 01;29(2):455–463. doi: 10.1093/nar/29.2.455
  • Chworos A, Severcan I, Koyfman AY, et al. Building programmable jigsaw puzzles with rna. Science. 2004;306(5704):2068–2072. doi: 10.1126/science.1104686
  • Severcan I, Geary C, Verzemnieks E, et al. Square-shaped RNA particles from different RNA folds. Nano Lett. 2009;9(3):1270–1277. doi: 10.1021/nl900261h
  • Afonin KA, Bindewald E, Yaghoubian AJ, et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature Nanotechnol. 2010;5(9):676–682. doi: 10.1038/nnano.2010.160
  • Shu D, Huang LP, Hoeprich S, et al. Construction of phi29 DNA-packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices. J Nanosci Nanotechnol. 2003;3(4):295–302. doi: 10.1166/jnn.2003.160
  • Hoeprich S, Guo P. Computer modeling of three-dimensional structure of DNA- packaging RNA (prna) monomer, dimer, and hexamer of phi29 DNA packaging motor. J Biol Chem. 2002;277(23):20794–20803. doi: 10.1074/jbc.M112061200
  • Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14(1):1–16. doi: 10.1146/annurev-bioeng-071811-150124
  • Shu D, Moll W-D, Deng Z, et al. Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett. 2004;4(9):1717–1723. doi: 10.1021/nl0494497
  • Guo S, Tschammer N, Mohammed S, et al. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor prna. Hum Gene Ther. 2005;16(9):1097–1110. doi: 10.1089/hum.2005.16.1097
  • Khaled A, Guo S, Li F, et al. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett. 2005;5(9):1797–1808. doi: 10.1021/nl051264s
  • Shu Y, Cinier M, Shu D, et al. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods. 2011;54(2):204–214. doi: 10.1016/j.ymeth.2011.01.008
  • Shu Y, Haque F, Shu D, et al. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA. 2013;19(6):767–777. doi: 10.1261/rna.037002.112
  • Khisamutdinov EF, Li H, Jasinski DL, et al. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 2014;42(15):9996–10004. doi: 10.1093/nar/gku516
  • Sharma A, Haque F, Pi F, et al. Controllable self-assembly of RNA dendrimers. Nanomedicine. 2016;12(3):835–844. doi: 10.1016/j.nano.2015.11.008
  • Li H, Zhang K, Pi F, et al. Controllable self-assembly of RNA tetrahedrons with precise shape and size for cancer targeting. Adv Mater. 2016;28(34):7501–7507. doi: 10.1002/adma.201601976
  • Xu C, Haque F, Jasinski DL, et al. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett. 2018;414:57–70. doi: 10.1016/j.canlet.2017.09.043
  • Yingling YG, Shapiro BA. Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett. 2007;7(8):2328–2334. doi: 10.1021/nl070984r
  • Paliy M, Melnik R, Shapiro BA. Molecular dynamics study of the RNA ring nanostructure: a phenomenon of self-stabilization. Phys Biol. 2009;6(4):046003. doi: 10.1088/1478-3975/6/4/046003
  • Grabow WW, Zakrevsky P, Afonin KA, et al. Self-assembling RNA nanorings based on RNAi/ii inverse kissing complexes. Nano Lett. 2011;11(2):878–887. doi: 10.1021/nl104271s
  • Afonin KA, Grabow WW, Walker FM, et al. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc. 2011;6(12):2022–2034. doi: 10.1038/nprot.2011.418
  • Afonin KA, Kireeva M, Grabow WW, et al. Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano Lett. 2012;12(10):5192–5195. doi: 10.1021/nl302302e
  • Afonin KA, Viard M, Koyfman AY, et al. Multifunctional RNA nanoparticles. Nano Lett. 2014;14(10):5662–5671. doi: 10.1021/nl502385k
  • Rothemund PWK, Papadakis N, Winfree E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2004;2(12):e424. doi: 10.1371/journal.pbio.0020424
  • Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297–302. doi: 10.1038/nature04586
  • Andersen ES, Dong M, Nielsen MM, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009;459(7243):73–76. doi: 10.1038/nature07971
  • Douglas SM, Marblestone AH, Teerapittayanon S, et al. Rapid prototyping of 3d DNA-origami shapes with cadnano. Nucleic Acids Res. 2009;37(15):5001–5006. doi: 10.1093/nar/gkp436
  • Afonin KA, Cieply DJ, Leontis NB. Specific RNA self-assembly with minimal paranemic motifs. J Am Chem Soc. 2008;130(1):93–102. doi: 10.1021/ja071516m
  • Shen Z, Yan H, Wang T, et al. Paranemic crossover DNA: a generalized holliday structure with applications in nanotechnology. J Am Chem Soc. 2004;126(6):1666–1674. doi: 10.1021/ja038381e
  • Sun X, Hyeon Ko S, Zhang C, et al. Surface-mediated DNA self-assembly. J Am Chem Soc. 2009;131(37):13248–13249. doi: 10.1021/ja906475w
  • Tian C, Li X, Liu Z, et al. Directed self-assembly of DNA tiles into complex nanocages. Angewandte Chemie. 2014;53(31):8041–8044. doi: 10.1002/anie.201400377
  • Yu J, Liu Z, Jiang W, et al. De Novo design of an RNA tile that self-assembles into a homo-octameric nanoprism. Nat Commun. 2015;6(1):5724. doi: 10.1038/ncomms6724
  • Ko SH, Su M, Zhang C, et al. Synergistic self- assembly of RNA and DNA molecules. Nature Chemistry. 2010;2(12):1050–1055. doi: 10.1038/nchem.890
  • Endo M, Yamamoto S, Tatsumi K, et al. RNA- templated DNA origami structures. Chem Comm. 2013;49(28):2879–2881. doi: 10.1039/c3cc38804b
  • Wang P, Ko SH, Tian C, et al. RNA–DNA hybrid origami: folding of a long RNA single strand into complex nanostructures using short DNA helper strands. Chem Comm. 2013;49(48):5462–5464. doi: 10.1039/c3cc41707g
  • Parsons MF, Allan MF, Li S, et al. 3d RNA-scaffolded wireframe origami. Nat Commun. 2023;14(1):382. doi: 10.1038/s41467-023-36156-1
  • Veneziano R, Ratanalert S, Zhang K, et al. Designer nanoscale DNA assemblies programmed from the top down. Science. 2016;352(6293):1534–1534. doi: 10.1126/science.aaf4388
  • Endo M, Takeuchi Y, Emura T, et al. Preparation of chemically modified RNA origami nanostructures. Chem–A Eur J. 2014;20(47):15330–15333. doi: 10.1002/chem.201404084
  • Geary C, Rothemund PWK, Andersen ES. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science. 2014;345(6198):799–804. doi: 10.1126/science.1253920
  • Geary CW, Andersen ES. Design principles for single-stranded RNA origami structures. In: Murata, Satoshi, Kobayashi, Satoshi editors. DNA computing and molecular programming: 20th international conference; 2014 sep 22–26; Kyoto, Japan. Springer Cham; 2014. p 1–9. doi: 10.1007/978-3-319-11295-4
  • Han D, Qi X, Myhrvold C, et al. Single-stranded DNA and RNA origami. Science. 2017;358(6369):eaao2648. doi: 10.1126/science.aao2648
  • Qi X, Liu X, Matiski L, et al. RNA origami nanostructures for potent and safe anticancer immunotherapy. ACS Nano. 2020;14(4):4727–4740. doi: 10.1021/acsnano.0c00602
  • Geary C, Grossi G, McRae EK, et al. RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat Chem. 2021;13(6):549–558. doi: 10.1038/s41557-021-00679-1
  • Winfree E, Liu F, Wenzler LA, et al. Design and self-assembly of two-dimensional DNA crystals. Nature. 1998;394(6693):539–544. doi: 10.1038/28998
  • Chen H, Weng T-W, Riccitelli MM, et al. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration. J Am Chem Soc. 2014;136(19):6995–7005. doi: 10.1021/ja500612d
  • Aghebat Rafat A, Sagredo S, Thalhammer M, et al. Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein- binding cavities. Nature Chemistry. 2020;12(9):852–859. doi: 10.1038/s41557-020-0504-6
  • Benn G, Mikheyeva IV, Inns PG, et al. Phase separation in the outer membrane of Escherichia coli. Proc Natl Acad Sci, USA. 2021;118(44):e2112237118. doi: 10.1073/pnas.2112237118
  • Chopinet L, Formosa C, Rols M, et al. Imaging living cells surface and quantifying its properties at high resolution using afm in qi™ mode. Micron. 2013;48:26–33. doi:10.1016/j.micron.2013.02.003
  • Kube M, Kohler F, Feigl E, et al. Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution. Nat Commun. 2020;11(1):6229. doi: 10.1038/s41467-020-20020-7
  • Lei D, Marras AE, Liu J, et al. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual- particle electron tomography. Nat Commun. 2018;9(1):592. doi: 10.1038/s41467-018-03018-0
  • McRae EK, Rasmussen HØ, Liu J, et al. Structure, folding and flexibility of co-transcriptional RNA origami. Nat Nanotech. 2023;1–10.
  • Vallina NS, McRae EKS, Hansen BK, et al. RNA origami scaffolds facilitate cryo-em characterization of a broccoli–pepper aptamer fret pair. Nucleic Acids Res. 2023;51(9):gkad224. doi: 10.1093/nar/gkad224
  • Li M, Zheng M, Wu S, et al. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Nat Commun. 2018;9(1):2196. doi: 10.1038/s41467-018-04652-4
  • Pothoulakis G, Nguyen MT, Andersen ES. Utilizing RNA origami scaffolds in saccharomyces cerevisiae for dcas9-mediated transcriptional control. Nucleic Acids Res. 2022;50(12):7176–7187. doi: 10.1093/nar/gkac470
  • Høiberg HC, Sparvath SM, Andersen VL, et al. An RNA origami octahedron with intrinsic siRNAs for potent gene knockdown. Biotechnol J. 2019;14(1):1700634. doi: 10.1002/biot.201700634
  • Stewart JM, Geary C, Franco E. Design and characterization of RNA nanotubes. ACS Nano. 2019;13(5):5214–5221. doi: 10.1021/acsnano.8b09421
  • Zadeh JN, Steenberg CD, Bois JS, et al. NUPACK: Analysis and design of nucleic acid systems. J Comput Chem. 2011;32(1):170–173. doi: 10.1002/jcc.21596
  • Wintersinger CM, Minev D, Ershova A, et al. Multi-micron crisscross structures grown from DNA-origami slats. Nature Nanotechnol. 2023;18(3):281–289. doi: 10.1038/s41565-022-01283-1
  • Behler KL, Honemann MN, Silva-Santos AR, et al. Phage-free production of artificial ssDNA with Escherichia coli. Biotechnol Bioeng. 2022;119(10):2878–2889. doi: 10.1002/bit.28171
  • Praetorius F, Kick B, Behler KL, et al. Biotechnological mass production of DNA origami. Nature. 2017;552(7683):84–87. doi: 10.1038/nature24650
  • Kretzmann JA, Liedl A, Monferrer A, et al. Gene-encoding DNA origami for mammalian cell expression. Nat Commun. 2023;14(1):1017. doi: 10.1038/s41467-023-36601-1
  • Liedl A, Grießing J, Kretzmann JA, Dietz, H, et al. Active Nuclear Import of Mammalian Cell-Expressible DNA Origami. J Am Chem Soc. 2022;145(9):4946–4950. doi: 10.1021/jacs.2c12733
  • Harcourt EM, Kietrys AM, Kool ET. Chemical and structural effects of base modifications in messenger RNA. Nature. 2017;541(7637):339–346. doi: 10.1038/nature21351
  • Rossi-Gendron C, El Fakih F, Nakazawa K, et al. Isothermal self-assembly of multicomponent and evolutive DNA nanostructures. ChemRxiv. 2022.
  • Sunbul M, Lackner J, Martin A, et al. Super-resolution RNA imaging using a rhodamine-binding aptamer with fast exchange kinetics. Nature Biotechnol. 2021;39(6):686–690. Retrieved from. doi: 10.1038/s41587-020-00794-3
  • Jasinski DL, Li H, Guo P. The effect of size and shape of RNA nanoparticles on biodistribution. Mol Ther. 2018;26(3):784–792. doi: 10.1016/j.ymthe.2017.12.018
  • Bindewald E, Grunewald C, Boyle B, et al. Computational strategies for the automated design of RNA nanoscale structures from building blocks using nanotiler. J Mol Graphics Modell. 2008;27(3):299–308. doi: 10.1016/j.jmgm.2008.05.004
  • Yesselman JD, Eiler D, Carlson ED, et al. Computational design of three-dimensional RNA structure and function. Nature Nanotechnol. 2019;14(9):866–873. doi: 10.1038/s41565-019-0517-8
  • Jossinet F, Ludwig TE, Westhof E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2d and 3d levels. Bioinformatics. 2010;26(16):2057–2059. doi: 10.1093/bioinformatics/btq321
  • Williams S, Lund K, Lin C, et al. Tiamat: a three-dimensional editing tool for complex DNA structures. In: Goel, Ashish, Simmel, Friedrich, Sosik, Peter editors. DNA computing: 14th international meeting on DNA computing; 2008 Jun 2–9; Prague, Czech Republic. Springer Berlin, Heidelberg; 2009. p. 90–101. doi: 10.1007/978-3-642-03076-5
  • Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–3415. doi: 10.1093/nar/gkg595
  • Lorenz R, Bernhart SH, Höner Zu Siederdissen C, et al. ViennaRNA package 2.0. Algorithms Mol Biol. 2011;6(1):1–14. doi: 10.1186/1748-7188-6-26
  • Sampedro Vallina N, McRae EK, Geary C, et al. An RNA paranemic crossover triangle as a 3d module for cotranscriptional nanoassembly. Small. 2022;19(13):2204651. doi: 10.1002/smll.202204651
  • Elonen A, Natarajan AK, Kawamata I, et al. Algorithmic design of 3d wireframe RNA polyhedra. ACS Nano. 2022;16(10):16608–16616. doi: 10.1021/acsnano.2c06035
  • Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9(1):133–148. doi: 10.1093/nar/9.1.133
  • Turner DH, Mathews DH. Nndb: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 2010;38(suppl 1):D280–D282. doi: 10.1093/nar/gkp892
  • Fornace ME, Huang J, Newman CT, et al. NUPACK: Analysis and design of nucleic acid structures, devices, and systems. Chem- Rxiv. 2022.
  • Mathews DH, Disney MD, Childs JL, et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci, USA. 2004;101(19):7287–7292. doi: 10.1073/pnas.0401799101
  • Andronescu M, Condon A, Turner DH, et al. RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. In: Gorodkin J, Ruzzo, W editors. Vol. 1097, Methods in Molecular Biology. Totowa, NJ: Humana Press; 2014. p. 45–70. doi: 10.1007/978-1-62703-709-9_3.
  • Eddy SR. How do RNA folding algorithms work? Nature Biotechnol. 2004;22(11):1457–1458. doi: 10.1038/nbt1104-1457
  • Lyngsø RB, Pedersen CN. RNA pseudoknot prediction in energy-based models. J Comput Biol. 2000;7(3–4):409–427. doi: 10.1089/106652700750050862
  • Sato K, Kato Y, Hamada M, et al. Ipknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics. 2011;27(13):i85–i93. doi: 10.1093/bioinformatics/btr215
  • Bellaousov S, Mathews DH. Probknot: fast prediction of RNA secondary structure including pseudoknots. RNA. 2010;16(10):1870–1880. doi: 10.1261/rna.2125310
  • Fu L, Cao Y, Wu J, et al. Ufold: fast and accurate RNA secondary structure prediction with deep learning. Nucleic Acids Res. 2022;50(3):e14–e14. doi: 10.1093/nar/gkab1074
  • Singh J, Hanson J, Paliwal K, et al. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun. 2019;10(1):5407. doi: 10.1038/s41467-019-13395-9
  • Liu J, McRae EK, Geary C, et al. Tertiary structure of single-instant RNA molecule reveals folding landscape. bioRxiv. 2023.
  • Zgarbová M, Otyepka M, Šponer J, et al. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput. 2011;7(9):2886–2902. doi: 10.1021/ct200162x
  • Uusitalo JJ, Ingólfsson HI, Marrink SJ, et al. Martini coarse-grained force field: extension to RNA. Biophys J. 2017;113(2):246–256. doi: 10.1016/j.bpj.2017.05.043
  • Pasquali S, Derreumaux P. Hire-RNA: a high resolution coarse-grained energy model for RNA. J Phys Chem B. 2010;114(37):11957–11966. doi: 10.1021/jp102497y
  • Denesyuk NA, Thirumalai D. Coarse-grained model for predicting RNA folding thermodynamics. J Phys Chem B. 2013;117(17):4901–4911. doi: 10.1021/jp401087x
  • Šulc P, Romano F, Ouldridge TE, et al. A nucleotide-level coarse-grained model of RNA. J Chem Phys. 2014;140(23):06B614 1. doi: 10.1063/1.4881424
  • Banás P, Hollas D, Zgarbová M, et al. Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J Chem Theory Comput. 2010;6(12):3836–3849. doi: 10.1021/ct100481h
  • Boniecki MJ, Lach G, Dawson WK, et al. Simrna: a coarse-grained method for RNA folding simulations and 3d structure prediction. Nucleic Acids Res. 2016;44(7):e63–e63. doi: 10.1093/nar/gkv1479
  • Cao S, Chen S-J. Physics-based de novo prediction of RNA 3d structures. J Phys Chem B. 2011;115(14):4216–4226. doi: 10.1021/jp112059y
  • Gopal SM, Mukherjee S, Cheng Y-M, et al. Primo/Primona: a coarse- grained model for proteins and nucleic acids that preserves near-atomistic accuracy. Proteins Struct Funct Bioinf. 2010;78(5):1266–1281. doi: 10.1002/prot.22645
  • Mustoe AM, Al-Hashimi HM, Brooks CL III. Coarse grained models reveal essential contributions of topological constraints to the conformational free energy of RNA bulges. J Phys Chem B. 2014;118(10):2615–2627. doi: 10.1021/jp411478x
  • Paliy M, Melnik R, Shapiro BA. Coarse-graining RNA nanostructures for molecular dynamics simulations. Phys Biol. 2010;7(3):036001. doi: 10.1088/1478-3975/7/3/036001
  • Poppleton E, Matthies M, Mandal D, et al. OxDNA: coarse-grained simulations of nucleic acids made simple. J Open Source Software. 2023;8(81):4693. doi: 10.21105/joss.04693
  • Rovigatti L, Šulc P, Reguly IZ, et al. A comparison between parallelization approaches in molecular dynamics simulations on GPUs. J Comput Chem. 2015;36(1):1–8. doi: 10.1002/jcc.23763
  • Liu H, Hong F, Smith F, et al. Kinetics of RNA and RNA: DNA hybrid strand displacement. ACS Synth Biol. 2021;10(11):3066–3073. doi: 10.1021/acssynbio.1c00336
  • Torelli E, Kozyra J, Shirt-Ediss B, et al. Cotranscriptional folding of a bio-orthogonal fluorescent scaffolded RNA origami. ACS Synth Biol. 2020;9(7):1682–1692. doi: 10.1021/acssynbio.0c00009
  • Liu D, Shao Y, Piccirilli JA, et al. Structures of artificially designed discrete RNA nanoarchitectures at near-atomic resolution. Sci Adv. 2021;7(39):eabf4459. doi: 10.1126/sciadv.abf4459
  • Magnus M, Boniecki MJ, Dawson W, et al. Simrnaweb: a web server for RNA 3d structure modeling with optional restraints. Nucleic Acids Res. 2016;44(W1):W315–W319. doi: 10.1093/nar/gkw279
  • Sponer J, Bussi G, Krepl M, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev. 2018;118(8):4177–4338. doi: 10.1021/acs.chemrev.7b00427
  • Li H, Wang S, Ji Z, et al. Construction of RNA nanotubes. Nano Res. 2019;12(8):1952–1958. doi: 10.1007/s12274-019-2463-z
  • Krissanaprasit A, Key CM, Froehlich K, et al. Multivalent aptamer-functionalized single-strand RNA origami as effective, target-specific anticoagulants with corresponding reversal agents. Adv Healthcare Mater. 2021;10(11):2001826. doi: 10.1002/adhm.202001826
  • De Franceschi N, Hoogenberg B, Dekker C. Engineering ssRNA tile filaments for (dis) assembly and membrane binding. bioRxiv. 2022.
  • Liu D, Geary CW, Chen G, et al. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat Chem. 2020;12(3):249–259. doi: 10.1038/s41557-019-0406-7
  • Delebecque CJ, Lindner AB, Silver PA, et al. Organization of intracellular reactions with rationally designed RNA assemblies. Science. 2011;333(6041):470–474. doi: 10.1126/science.1206938
  • Nguyen MT, Pothoulakis G, Andersen ES. Synthetic translational regulation by protein-binding RNA origami scaffolds. ACS Synth Biol. 2022;11(5):1710–1718. doi: 10.1021/acssynbio.1c00608
  • Jepsen MD, Sparvath SM, Nielsen TB, et al. Development of a genetically encodable fret system using fluorescent RNA aptamers. Nat Commun. 2018;9(1):18. doi: 10.1038/s41467-017-02435-x
  • Shibata T, Fujita Y, Ohno H, et al. Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate. Nat Commun. 2017;8(1):540. doi: 10.1038/s41467-017-00459-x
  • Litke JL, Jaffrey SR. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nature Biotechnol. 2019;37(6):667–675. doi: 10.1038/s41587-019-0090-6
  • Krissanaprasit A, Key C, Fergione M, et al. Genetically encoded, functional single-strand RNA origami: anticoagulant. Adv Mater. 2019;31(21):1808262. doi: 10.1002/adma.201808262
  • Yip T, Qi X, Kollings J, et al. RNA origami as a vaccine assembly platform to promote cd8 t cell mediated anti-tumor immunity. J Immunol. 2022;208(1 Supplement):66–03. doi: 10.4049/jimmunol.208.Supp.66.03
  • Guo S, Li H, Ma M, et al. Size, shape, and sequence- dependent immunogenicity of RNA nanoparticles. Mol Ther Nucleic Acids. 2017;9:399–408. doi: 10.1016/j.omtn.2017.10.010
  • Hoose A, Vellacott R, Storch M, et al. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem. 2023;7(3):144–161. doi: 10.1038/s41570-022-00456-9
  • Venter JC, Glass JI, Hutchison CA, et al. Synthetic chromosomes, genomes, viruses, and cells. Cell. 2022;185(15):2708–2724. doi: 10.1016/j.cell.2022.06.046