1,870
Views
2
CrossRef citations to date
0
Altmetric
Technical Paper

Comprehensive identification of diverse ribosomal RNA modifications by targeted nanopore direct RNA sequencing and JACUSA2

, , , , , , & ORCID Icon show all
Pages 652-665 | Accepted 11 Aug 2023, Published online: 27 Aug 2023

References

  • Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J. 2019;38(13):e100278. doi: 10.15252/embj.2018100278
  • Badertscher L, Wild T, Montellese C, et al. Genome-wide RNAi Screening Identifies protein modules required for 40S subunit synthesis in human cells. Cell Rep. 2015;13(12):2879–2891. doi: 10.1016/j.celrep.2015.11.061
  • Wild T, Horvath P, Wyler E, et al. A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S subunit export. PLoS Biol. 2010;8(10):e1000522. doi: 10.1371/journal.pbio.1000522
  • Farley-Barnes KI, McCann KL, Ogawa LM, et al. Diverse regulators of human ribosome biogenesis discovered by changes in nucleolar number. Cell Rep. 2018;22(7):1923–1934. doi: 10.1016/j.celrep.2018.01.056
  • Tafforeau L, Zorbas C, Langhendries JL, et al. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing factors. Mol Cell. 2013;51(4):539–551. doi: 10.1016/j.molcel.2013.08.011
  • Sharma S, Lafontaine DLJ. ‘View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem Sci. 2015;40(10):560–575. doi: 10.1016/j.tibs.2015.07.008
  • Sloan KE, Warda AS, Sharma S, et al. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biology. 2017;14(9):1138–1152. doi: 10.1080/15476286.2016.1259781
  • Taoka M, Nobe Y, Yamaki Y, et al. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 2018;46(18):9289–9298. doi: 10.1093/nar/gky811
  • Zorbas C, Nicolas E, Wacheul L, et al. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. MBoC. 2015;26(11):2080–2095. doi: 10.1091/mbc.E15-02-0073
  • Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRnps: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA. 2012;3(3):397–414. doi: 10.1002/wrna.117
  • Helm M. Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res. 2006;34(2):721–733. doi: 10.1093/nar/gkj471
  • Penzo M, Montanaro L. Turning Uridines around: role of rRNA pseudouridylation in ribosome biogenesis and ribosomal function. Biomolecules. 2018;8(2):38. doi: 10.3390/biom8020038
  • Liang XH, Liu Q, Fournier MJ. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA. 2009;15(9):1716–1728. doi: 10.1261/rna.1724409
  • Monaco PL, Marcel V, Diaz JJ, et al. 2’-O-Methylation of ribosomal RNA: towards an epitranscriptomic control of translation? Biomolecules, 8. 2′-O-Methylation of ribosomal RNA: towards an epitranscriptomic control of translation? 2018;8(4):doi: 10.3390/biom8040106
  • Kampen KR, Sulima SO, Vereecke S, et al. Hallmarks of ribosomopathies. Nucleic Acids Res. 2020;48(3):1013–1028. doi: 10.1093/nar/gkz637
  • Mason PJ, Bessler M. The genetics of dyskeratosis congenita. Cancer Genet. 2011;204(12):635–645. doi: 10.1016/j.cancergen.2011.11.002
  • Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature. 1999;402(6761):551–555. doi: 10.1038/990141
  • Penzo M, Rocchi L, Brugiere S, et al. Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation. FASEB J. 2015;29(8):3472–3482. doi: 10.1096/fj.15-270991
  • Jack K, Bellodi C, Landry DM, et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell. 2011;44(4):660–666. doi: 10.1016/j.molcel.2011.09.017
  • Stults DM, Killen MW, Pierce HH, et al. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 2008;18(1):13–18. doi: 10.1101/gr.6858507
  • Parks MM, Kurylo CM, Dass RA, et al. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci Adv. 2018;4(2):eaao0665. doi: 10.1126/sciadv.aao0665
  • Rothschild D, Susanto TT, Spence JP, et al. (2023) A comprehensive rRNA variation atlas in health and disease. bioRxiv, 2023.2001.2030.526360.
  • Birkedal U, Christensen-Dalsgaard M, Krogh N, et al. Profiling of ribose methylations in RNA by high-throughput sequencing. Angew Chem Int Ed Engl. 2015;54:451–455. doi: 10.1002/anie.201408362
  • Marchand V, Pichot F, Neybecker P, et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 2020;48(19):e110. doi: 10.1093/nar/gkaa769
  • Garalde DR, Snell EA, Jachimowicz D, et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods. 2018;15(3):201–206. doi: 10.1038/nmeth.4577
  • Workman RE, Tang AD, Tang PS, et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods. 2019;16(12):1297–1305. doi: 10.1038/s41592-019-0617-2
  • Jenjaroenpun P, Wongsurawat T, Pereira R, et al. Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Res. 2018;46(7):e38. doi: 10.1093/nar/gky014
  • Liu H, Begik O, Lucas MC, et al. Accurate detection of m(6)A RNA modifications in native RNA sequences. Nat Commun. 2019;10(1):4079. doi: 10.1038/s41467-019-11713-9
  • Smith AM, Jain M, Mulroney L, et al. Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS One. 2019;14(5):e0216709. doi: 10.1371/journal.pone.0216709
  • Jenjaroenpun P, Wongsurawat T, Wadley TD, et al. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res. 2021;49(2):e7. doi: 10.1093/nar/gkaa620
  • Piechotta M, Naarmann-de Vries IS, Wang Q, et al. RNA modification mapping with JACUSA2. Genome Biol. 2022;23(1):115. doi: 10.1186/s13059-022-02676-0
  • Begik O, Lucas MC, Pryszcz LP, et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat Biotechnol. 2021;39(10):1278–1291. doi: 10.1038/s41587-021-00915-6
  • Bailey AD, Talkish J, Ding H, et al. Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling. Elife. 2022;11: doi: 10.7554/eLife.76562
  • Pratanwanich PN, Yao F, Chen Y, et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat Biotechnol. 2021;39(11):1394–1402. doi: 10.1038/s41587-021-00949-w
  • Liu H, Begik O, Novoa EM. EpiNano: Detection of m(6)A RNA modifications using Oxford Nanopore direct RNA sequencing. Methods Mol Biol. 2021;2298:31–52.
  • Leger A, Amaral PP, Pandolfini L, et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat Commun. 2021;12(1):7198. doi: 10.1038/s41467-021-27393-3
  • van Tran N, Ernst FGM, Hawley BR, et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 2019;47(15):7719–7733. doi: 10.1093/nar/gkz619
  • Lafontaine D, Vandenhaute J, Tollervey D. The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast. Genes Dev. 1995;9(20):2470–2481. doi: 10.1101/gad.9.20.2470
  • Lafontaine DL, Preiss T, Tollervey D. Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Mol Cell Biol. 1998;18(4):2360–2370. doi: 10.1128/MCB.18.4.2360
  • White J, Li Z, Sardana R, et al. Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits. Mol Cell Biol. 2008;28(10):3151–3161. doi: 10.1128/MCB.01674-07
  • Haag S, Kretschmer J, Bohnsack MT. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA. 2015;21(2):180–187. doi: 10.1261/rna.047910.114
  • Breunig MM, Kriegel H-P, Ng RT, et al. LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data; Dallas, Texas, USA. Association for Computing Machinery; 2000. p. 93–104.
  • Sharma S, Langhendries JL, Watzinger P, et al. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRnas assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 2015;43(4):2242–2258. doi: 10.1093/nar/gkv075
  • Letoquart J, Huvelle E, Wacheul L, et al. Structural and functional studies of Bud23–Trm112 reveal 18S rRNA N 7 -G1575 methylation occurs on late 40S precursor ribosomes. Proc Natl Acad Sci U S A. 2014;111(51):E5518–5526. doi: 10.1073/pnas.1413089111
  • Thomas JM, Briney CA, Nance KD, et al. A chemical signature for cytidine acetylation in RNA. J Am Chem Soc. 2018;140(40):12667–12670. doi: 10.1021/jacs.8b06636
  • Sas-Chen A, Thomas JM, Matzov D, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature. 2020;583(7817):638–643. doi: 10.1038/s41586-020-2418-2
  • Thomas JM, Bryson KM, Meier JL. Nucleotide resolution sequencing of N4-acetylcytidine in RNA. Methods Enzymol. 2019;621:31–51.
  • Jain M, Olsen HE, Akeson M, et al. Adaptation of human ribosomal RNA for Nanopore sequencing of Canonical and modified nucleotides. Methods Mol Biol. 2021;2298:53–74.
  • Leismann J, Spagnuolo M, Pradhan M, et al. The 18S ribosomal RNA m 6 a methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep. 2020;21(7):e49443. doi: 10.15252/embr.201949443
  • Ito S, Horikawa S, Suzuki T, et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J Biol Chem. 2014;289(52):35724–35730. doi: 10.1074/jbc.C114.602698
  • Bortolin-Cavaille ML, Quillien A, Thalalla Gamage S, et al. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Research. 2022;50(11):6284–6299. doi: 10.1093/nar/gkac404
  • Figaro S, Wacheul L, Schillewaert S, et al. Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575. Molecular And Cellular Biology. 2012;32(12):2254–2267. doi: 10.1128/MCB.06623-11
  • Gay DM, Lund AH, Jansson MD. Translational control through ribosome heterogeneity and functional specialization. Trends Biochem Sci. 2022;47(1):66–81. doi: 10.1016/j.tibs.2021.07.001
  • Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett. 2017;591(13):1801–1850. doi: 10.1002/1873-3468.12682
  • Preti M, O’Donohue MF, Montel-Lehry N, et al. Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA. Nucleic Acids Res. 2013;41(8):4709–4723. doi: 10.1093/nar/gkt160
  • Sloan KE, Mattijssen S, Lebaron S, et al. Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. J Cell Bio. 2013;200(5):577–588. doi: 10.1083/jcb.201207131