829
Views
1
CrossRef citations to date
0
Altmetric
Research paper

Synergistic correlation between host angiogenin and dengue virus replication

, , , , & ORCID Icon
Pages 805-816 | Accepted 20 Sep 2023, Published online: 05 Oct 2023

References

  • Le Clerc J. Action of ribonuclease on the multiplication of the influenza virus. Nature. 1956;177(4508):578–579. doi: 10.1038/177578b0
  • Rosenberg HF. Eosinophil-derived neurotoxin (Edn/RNase 2) and the mouse eosinophil-associated RNases (mEars): expanding roles in promoting host defense [Internet]. Int J Mol Sci. 2015;16(12):15442–15455. Available from. doi: 10.3390/ijms160715442.
  • Maheshwari D, Saini K, Singh P, et al. Contrasting behavior between the three human monocyte subsets in dengue pathophysiology. iScience [Internet]. 2022;25(6):104384. Available from. doi: 10.1016/j.isci.2022.104384
  • Cocchi F, DeVico AL, Lu W, et al. Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of β chemokines and RNases. Proc Natl Acad Sci U S A. 2012;109(14):5411–5416. doi: 10.1073/pnas.1202240109
  • Schirrmann T, Krauss J, Arndt MAE, et al. Targeted therapeutic RNases (ImmunoRnases). Expert Opin Biol Ther. 2009;9(1):79–95. doi: 10.1517/14712590802631862
  • Wong RR, Abd-Aziz N, Affendi S, et al. Role of microRnas in antiviral responses to dengue infection. J Biomed Sci. 2020;27(1):4. doi: 10.1186/s12929-019-0614-x
  • Su Y, Lin T, Liu C, et al. microRnas, the link between dengue virus and the host genome. Front Microbiol. 2021;12. doi: 10.3389/fmicb.2021.714409
  • Castillo JA, Castrillón JC, Diosa-Toro M, et al. Complex interaction between dengue virus replication and expression of miRNA-133a. BMC Infect Dis. 2016;16(1):29. doi: 10.1186/s12879-016-1364-y
  • Bogerd HP, Skalsky RL, Kennedy EM, et al. Replication of many human viruses is refractory to inhibition by endogenous cellular MicroRNAs. J Virol. 2014;88(14):8065–8076. doi: 10.1128/JVI.00985-14
  • de Oliveira LF, de Andrade AAS, Pagliari C, et al. Differential expression analysis and profiling of hepatic miRNA and isomiRNA in dengue hemorrhagic fever. Sci Rep. 2021;11:1–9. doi: 10.1038/s41598-020-72892-w. Available from.
  • Kanokudom S, Vilaivan T, Wikan N, et al. miR-21 promotes dengue virus serotype 2 replication in HepG2 cells. Antiviral Res. 2017;142:169–177. doi: 10.1016/j.antiviral.2017.03.020
  • Ahmed N, Ahmed N, Pezacki JP. miR-383 regulates hepatic lipid homeostasis and response to dengue virus infection. 2021; 8(5): 928–941. doi:10.1021/acsinfecdis.1c00470.
  • Rajput R, Sharma J, Nair MT, et al. Regulation of host innate immunity by non-coding RNAs during dengue virus infection. Front Cell Infect Microbiol. 2020;10. doi: 10.3389/fcimb.2020.588168
  • Mukherjee D, Kumar R, Ray U. Drug repurposing commonly against dengue virus capsid and SARS-CoV-2 nucleocapsid: an in silico approach. ChemRxiv [Internet]. 2020. doi:10.26434/chemrxiv.12611861.v1. Available from.
  • Botta L, Rivara M, Zuliani V, et al. Drug repurposing approaches to fight dengue virus infection and related diseases. Front Biosci - Landmark [Internet]. 2018;23(3):997–1019. Available from. doi: 10.2741/4630.
  • Malakar S, Sreelatha L, Dechtawewat T, et al. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res [Internet]. 2018;255:171–178. doi: 10.1016/j.virusres.2018.07.018. Available from.
  • Tay MYF, Fraser JE, Chan WKK, et al. Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res [Internet]. 2013;99(3):301–306. Available from. doi: 10.1016/j.antiviral.2013.06.002.
  • Cully DF, Vassilatis DK, Liu KK, et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. [Internet] Nature1994. 1994;371(6499):707–711. Available from. doi: 10.1038/371707a0.
  • Mastrangelo E, Pezzullo M, De Burghgraeve T, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother [Internet]. 2012;67(8):1884–1894. Available from. doi: 10.1093/jac/dks147
  • Geary TG. Ivermectin 20 years on: maturation of a wonder drug [Internet]. Trends Parasitol. 2005;21(11):530–532. Available from. doi: 10.1016/j.pt.2005.08.014.
  • Wagstaff KM, Sivakumaran H, Heaton SM, et al. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J. 2012;443(3):851–856. Available from. doi: 10.1042/bj20120150
  • Pryor MJ, Rawlinson SM, Butcher RE, et al. Nuclear localization of dengue virus nonstructural protein 5 through its importin α/β-recognized nuclear localization sequences is integral to viral infection. Traffic. 2007;8(7):795–807. doi: 10.1111/j.1600-0854.2007.00579.x
  • Hannemann H, Sung PY, Chiu HC, et al. Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization. J Biol Chem. 2013;288(31):22621–22635. doi: 10.1074/jbc.M113.481382
  • De Maio FA, Risso G, Iglesias NG, et al. The dengue virus NS5 protein Intrudes in the cellular spliceosome and modulates splicing. PLOS Pathog. 2016;12(8):e1005841. doi: 10.1371/journal.ppat.1005841
  • Kumar A, Bühler S, Selisko B, et al. Nuclear localization of dengue virus nonstructural protein 5 does not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling. J Virol [Internet]. 2013;87(8):4545–4557. Available from. doi: 10.1128/jvi.03083-12.
  • Manokaran G, Finol E, Wang C, et al. Expression for epidemiological fitness. Available from. 2016;350(6257):217–221. DOI:10.1126/science.aab3369
  • Finol E, Ooi EE. Evolution of subgenomic RNA shapes dengue virus adaptation and epidemiological fitness. iScience. 2019;16:94–105. doi: 10.1016/j.isci.2019.05.019
  • Sullivan CS. New roles for large and small viral RNAs in evading host defences [Internet]. Nat Rev Genet. 2008;9(7):503–507. Available from. doi: 10.1038/nrg2349.
  • Madhry D, Pandey KK, Kaur J, et al. Role of non-coding RNAs in dengue virus-host interaction [Internet]. Front Biosci - Sch. 2021;13:44–55. doi: 10.52586/s552. Available from.
  • Pandey KK, Madhry D, Ravi Kumar YS, et al. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. Mol Ther - Nucleic Acids [Internet]. 2021;26:161–173. Available from. doi: 10.1016/j.omtn.2021.06.023.
  • Gao X, Xu Z. Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai). 2008;40(7):619–624. doi: 10.1111/j.1745-7270.2008.00442.x
  • Garnett ER, Raines RT. Emerging biological functions of ribonuclease 1 and angiogenin. Crit Rev Biochem Mol Biol. 2022;57(3):244–260. doi: 10.1080/10409238.2021.2004577
  • Yamasaki S, Ivanov P, Hu GF, et al. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Bio. 2009;185(1):35–42. doi: 10.1083/jcb.200811106
  • Emara MM, Ivanov P, Hickman T, et al. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem. 2010;2285(14):10959–10968. Available from. doi: 10.1074/jbc.m109.077560.
  • Deng J, Ptashkin RN, Chen Y, et al. Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism. Mol Ther [Internet]. 2015;23(10):1622–1629. Available from. doi: 10.1038/mt.2015.124
  • Zhou J, Liu S, Chen Y, et al. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection. J Gen Virol [Internet]. 2017;98(7):1600–1610. Available from. doi: 10.1099/jgv.0.000852.
  • Sadagopan S, Valiya Veettil M, Paudel N, et al. Kaposi’s Sarcoma-associated herpesvirus-induced Angiogenin plays roles in latency via the Phospholipase Cγ Pathway: blocking Angiogenin inhibits latent gene expression and induces the lytic cycle. J Virol [Internet]. 2011;85:2666–2685. doi: 10.1128/jvi.01532-10. Available from.
  • Devignot S, Sapet C, Duong V, et al. Genome-wide expression profiling deciphers host responses altered during dengue shock syndrome and reveals the role of innate immunity in severe dengue. PLoS One. 2010;5(7):e11671. Available from. doi: 10.1371/journal.pone.0011671
  • Fu H, Feng J, Liu Q, et al. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett. 2009;583(2):437–442. doi: 10.1016/j.febslet.2008.12.043
  • Kim H, Choi H, Lee SK, et al. Epstein-Barr virus MicroRNA miR-BART20-5p suppresses lytic induction by inhibiting BAD -Mediated caspase-3 -dependent apoptosis. J Virol. 2016;90(3):1359–1368. doi: 10.1128/JVI.02794-15
  • Park S, Cho DH, Andera L, et al. Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins. Mol Cell Biochem. 2013;383(1–2):39–48. doi: 10.1007/s11010-013-1752-1
  • Gutiérrez-Barbosa H, Castañeda NY, Castellanos JE. Differential replicative fitness of the four dengue virus serotypes circulating in Colombia in human liver Huh7 cells. Brazilian J Infect Dis [Internet]. 2020;24(1):13–24. Available from. doi: 10.1016/j.bjid.2019.11.003.
  • Diamond MS, Edgil D, Roberts TG, et al. Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol [Internet]. 2000;74(17):7814–7823. Available from. doi: 10.1128/jvi.74.17.7814-7823.2000.
  • Lu L, Li J, Moussaoui M, et al. Immune modulation by human secreted RNases at the extracellular space. Front Immunol [Internet]. 2018;9. Available from.
  • Li J, Boix E. Host defence RNases as antiviral agents against enveloped single stranded RNA viruses. Virulence [Internet]. 2021;12(1):444–469. Available from. doi: 10.1080/21505594.2021.1871823.
  • Hussain M, Zhang G, Leitner M, et al. Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti. iScience. 2023;26(1):105836. doi: 10.1016/j.isci.2022.105836
  • Nagy PD, Carpenter CD, Simon AE. A novel 3′-end repair mechanism in an RNA virus. Proc Natl Acad Sci U S A. 1997;94(4):1113–1118. doi: 10.1073/pnas.94.4.1113
  • Bruscella P, Danso H, Baudesson C, et al. P0684: modulation of hepatitis C virus infection through KHSRP-dependent regulation of MIRNA-122 maturation and intracellular RNA degradation. J Hepatol. 2015;62:S578–S579. doi: 10.1016/S0168-8278(15)30887-4
  • Spångberg K, Wiklund L, Schwartz S. Binding of the La autoantigen to the hepatitis C virus 3′ untranslated region protects the RNA from rapid degradation in vitro. J Gen Virol. 2001;82(1):113–120. doi: 10.1099/0022-1317-82-1-113
  • Kato F, Ishida Y, Oishi S, et al. Novel antiviral activity of bromocriptine against dengue virus replication. Antiviral Res [Internet] Available from. 2016;131:141–147. doi: 10.1016/j.antiviral.2016.04.014
  • Lai JH, Wu DW, Wu CH, et al. Mitochondrial CMPK2 mediates immunomodulatory and antiviral activities through IFN-dependent and IFN-independent pathways. iScience [Internet]. 2021;24(6):102498. Available from. doi: 10.1016/j.isci.2021.102498.
  • Ray U, Das S. Interplay between NS3 protease and human la protein regulates translation-replication switch of hepatitis C virus. Sci Rep. 2011;1(1). Available from. doi: 10.1038/srep00001
  • Cao H, Zhao K, Yao Y, et al. RNA binding protein 24 regulates the translation and replication of hepatitis C virus. Protein Cell. 2018;9(11):930–944. doi: 10.1007/s13238-018-0507-x
  • Yap TL, Xu T, Chen Y-L, et al. Crystal structure of the dengue virus RNA-Dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol [Internet]. 2007;81(9):4753–4765. Available from. doi: 10.1128/jvi.02283-06.
  • Lyons SM, Fay MM, Akiyama Y, et al. RNA biology of angiogenin: Current state and perspectives. RNA Biol. 2017;14(2):171–178. doi: 10.1080/15476286.2016.1272746
  • Sheng J, Xu Z. Three decades of research on angiogenin: a review and perspective [Internet]. Acta Biochim Biophys Sin (Shanghai). 2016;48(5):399–410. Available from. doi: 10.1093/abbs/gmv131.
  • Cocchi F, DeVico AL, Lu W, et al. Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of β chemokines and RNases. Proc Natl Acad Sci U S A [Internet]. 2012;109(14):5411–5416. Available from. doi: 10.1073/pnas.1202240109
  • Hanley JP, Tu HA, Dragon JA, et al. Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model. Nat Commun. 2021;12(1):1–14. Available from. doi: 10.1038/s41467-021-22930-6
  • Shao Y, Sun Q, Liu X, et al. tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer. Chem Biol Drug Des [Internet]. 2017;90(5):730–738. Available from. doi: 10.1111/cbdd.12994.
  • Ouyang X, Jiang X, Gu D, et al. Dysregulated serum miRNA profile and promising biomarkers in dengue-infected patients. Int J Med Sci. 2016;13(3):195–205. doi: 10.7150/ijms.13996
  • Abaturov AE, Babуch VL. Regulation of miRNA content. Part 2. Degradation of miRnas. 2021; 16(5). doi:10.22141/2224-0551.16.5.2021.239719.
  • Mishra R, Kumar A, Ingle H, et al. The interplay between viral-derived miRnas and host immunity during infection. Front Immunol. 2020;10:10. doi: 10.3389/fimmu.2019.03079
  • Miesen P, Ivens A, Buck AH, et al. Small RNA profiling in dengue virus 2-infected Aedes mosquito cells reveals viral piRnas and novel host miRnas. PLoS Negl Trop Dis. 2016;10(2):1–22. doi: 10.1371/journal.pntd.0004452
  • Ouyang X, Jiang X, Gu D, et al. Dysregulated serum miRNA profile and promising biomarkers in dengue-infected patients. Int J Med Sci [Internet]. 2016;13(3):195. Available from. doi: 10.7150/ijms.13996.
  • Huang X, Wu S, Zhang P. miR146a facilitates DENV2 replication by targeting TRAF6 and inhibiting interferon production (168.19). J Immunol. 2012;188(1_Supplement):.168.19–.168.19. doi: 10.4049/jimmunol.188.Supp.168.19
  • Pu J, Wu S, Xie H, et al. miR-146a inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol [Internet]. 2017;162:3645–3659. doi: 10.1007/s00705-017-3516-9. Available from.
  • Weng C, Dong H, Bai R, et al. Angiogenin promotes angiogenesis via the endonucleolytic decay of miR-141 in colorectal cancer. Mol Ther - Nucleic Acids [Internet]. 2022;27:1010–1022. Available from. doi: 10.1016/j.omtn.2022.01.017.
  • Kansakar U, Gambardella J, Varzideh F, et al. miR-142 targets TIM-1 in human endothelial cells: potential implications for stroke, COVID-19, Zika, Ebola, dengue, and other viral infections. Int J Mol Sci. 2022;23(18):10242. Available from. doi: 10.3390/ijms231810242
  • Srikiatkhachorn A, Kelley JF. Endothelial cells in dengue hemorrhagic fever. Antiviral Res. 2014;109:160–170. doi: 10.1016/j.antiviral.2014.07.005