1,872
Views
1
CrossRef citations to date
0
Altmetric
Review

Dynamic RNA synthetic biology: new principles, practices and potential

, , , & ORCID Icon
Pages 817-829 | Received 28 Oct 2023, Accepted 23 Aug 2023, Published online: 03 Dec 2023

References

  • Sharp PA. The centrality of RNA. Cell. 2009;136(4):577–580.
  • Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.
  • Isaacs FJ, Dwyer DJ, Collins JJ. RNA synthetic biology. Nat Biotechnol. 2006;24(5):545–554.
  • Thavarajah W, Hertz LM, Bushhouse DZ, et al. RNA engineering for public health: innovations in RNA-based diagnostics and therapeutics. Annu Rev Chem Biomol Eng. 2021;12(1):263–286. doi: 10.1146/annurev-chembioeng-101420-014055.
  • Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279. doi: 10.1038/nrd.2017.243.
  • Lo J, Humphreys JR, Jack J, et al. The metabolism of clostridium ljungdahlii in phosphotransacetylase negative strains and development of an ethanologenic strain. Front Bioeng Biotechnol. 2020;8:560726.
  • Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. eLife. 2013;2:e00471–e00471.
  • Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012. doi: 10.1038/s41596-019-0210-2.
  • Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):436–439. doi: 10.1126/science.aar6245.
  • Bushhouse DZ, Choi EK, Hertz LM, et al. How does RNA fold dynamically? J Mol Biol. 2022;434(18):167665. doi: 10.1016/j.jmb.2022.167665.
  • Yarnell WS, Roberts JW. Mechanism of intrinsic transcription termination and antitermination. Science. 1999;284(5414):611–615.
  • Nudler E, Gottesman ME. Transcription termination and anti-termination in E. coli. Genes to cells: devoted to molecular & cellular mechanisms. Genes to Cells: Devoted to Molecular & Cellular Mechanisms. 2002;7(8):755–768.
  • Larson MH, Greenleaf WJ, Landick R, et al. Applied force reveals mechanistic and energetic details of transcription termination. Cell. 2008;132(6):971–982. doi: 10.1016/j.cell.2008.01.027.
  • de Smit MH, van Duin J. Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol. 2003;331(4):737–743.
  • Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol. 2011;3(12):a003798.
  • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79(1):351–379.
  • Alifano P, Bruni CB, Carlomagno MS. Control of mRNA processing and decay in prokaryotes. Genetica. 1994;94(2–3):157–172.
  • Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–641.
  • Wei J-W, Huang K, Yang C, et al. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37(1):3–9. doi: 10.3892/or.2016.5236.
  • Luco RF, Misteli T. More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev. 2011;21(4):366–372.
  • Saldi T, Cortazar MA, Sheridan RM, et al. Coupling of RNA polymerase ii transcription elongation with pre-mRNA splicing. J Mol Biol. 2016;428(12):2623–2635. doi: 10.1016/j.jmb.2016.04.017.
  • Buratti E, Baralle FE. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol. 2004;24(24):10505–10514.
  • Wu X, Bartel DP. Widespread influence of 3’-end structures on mammalian mRNA processing and stability. Cell. 2017;169(5):905–917.e11.
  • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81(1):145–166.
  • Ren A, Rajashankar KR, Patel DJ. Global RNA fold and molecular recognition for a pfl riboswitch bound to ZMP, a master regulator of one-carbon metabolism. Structure. 2015;23(8):1375–1381.
  • Pan J, Woodson SA. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. J Mol Biol. 1998;280(4):597–609.
  • Holtkamp S, Kreiter S, Selmi A, et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. 2006;108(13):4009–4017.
  • Zhou J, Lazar D, Li H, et al. Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1. Theranostics. 2018;8(6):1575–1590. doi: 10.7150/thno.23085.
  • Wheeler LA, Vrbanac V, Trifonova R, et al. Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol ther. 2013;21(7):1378–1389. doi: 10.1038/mt.2013.77.
  • Thavarajah W, Silverman AD, Verosloff MS, et al. Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. ACS Synth Biol. 2020;9(1):10–18. doi: 10.1021/acssynbio.9b00347.
  • Bushhouse DZ, Lucks JB. Tuning strand displacement kinetics enables programmable ZTP riboswitch dynamic range in vivo. Nucleic Acids Res. 2023;51(6):2891–2903.
  • Chauvier A, Ajmera P, Yadav R, et al. Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Proc Natl Acad Sci U S A. 2021;118(47):e2109026118. doi: 10.1073/pnas.2109026118.
  • Cheng L, White EN, Brandt NL, et al. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch. Nucleic Acids Res. 2022;50(21):12001–12018. doi: 10.1093/nar/gkac102.
  • Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol. 2004;5(6):451–463.
  • Landgraf T, Völklein AE, Fürtig B, et al. The cotranscriptional folding landscape for two cyclic di-nucleotide-sensing riboswitches with highly homologous aptamer domains acting either as ON- or OFF-switches. Nucleic Acids Res. 2022;50(12):6639–6655. doi: 10.1093/nar/gkac514.
  • de Smit MH, van Duin J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A. 1990;87(19):7668–7672.
  • Watters KE, Strobel EJ, Yu AM, et al. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat Struct Mol Biol. 2016;23(12):1124–1131. doi: 10.1038/nsmb.3316.
  • Machinek RRF, Ouldridge TE, Haley NEC, et al. Programmable energy landscapes for kinetic control of DNA strand displacement. Nat Commun. 2014;5(1):5324. doi: 10.1038/ncomms6324.
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–822.
  • Khoroshkin M, Asarnow D, Navickas A, et al. A systematic search for RNA structural switches across the human transcriptome. bioRxiv. 2023;2023.03.11.532161.
  • Roth A, Weinberg Z, Chen AG, et al. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. 2014;10(1):56–60. doi: 10.1038/nchembio.1386.
  • Zaug AJ, Been MD, Cech TR. The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature. 1986;324(6096):429–433.
  • Cech TR. Self-splicing of group I introns. Annu Rev Biochem. 1990;59(1):543–568.
  • Heilman-Miller SL, Woodson SA. Effect of transcription on folding of the Tetrahymena ribozyme. RNA. 2003;9(6):722–733.
  • Russell R, Herschlag D. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway. J Mol Biol. 2001;308(5):839–851.
  • Das R, Kwok LW, Millett IS, et al. The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme. J Mol Biol. 2003;332(2):311–319. doi: 10.1016/s0022-2836(03)00854-4.
  • Korman A, Sun H, Hua B, et al. Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space. Proc Natl Acad Sci U S A. 2020;117(22):12080–12086. doi: 10.1073/pnas.2003425117.
  • Townshend B, Xiang JS, Manzanarez G, et al. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors. Nat Commun. 2021;12(1):1437. doi: 10.1038/s41467-021-21716-0.
  • Gambill L, Staubus A, Mo KW, et al. A split ribozyme that links detection of a native RNA to orthogonal protein outputs. Nat Commun. 2023;14(1):543. doi: 10.1038/s41467-023-36073-3.
  • Li S, Palo MZ, Zhang X, et al. Snapshots of the second-step self-splicing of Tetrahymena ribozyme revealed by cryo-EM. Nat Commun. 2023;14(1):1294. doi: 10.1038/s41467-023-36724-5.
  • Qi X, Liu X, Matiski L, et al. RNA origami nanostructures for potent and safe anticancer immunotherapy. ACS nano. 2020;14(4):4727–4740. doi: 10.1021/acsnano.0c00602.
  • Oktay E, Alem F, Hernandez K, et al. DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response. Commun Biol. 2023;6(1):308. doi: 10.1038/s42003-023-04689-2.
  • Du RR, Cedrone E, Romanov A, et al. Innate Immune stimulation using 3D wireframe DNA origami. ACS nano. 2022;16(12):20340–20352. doi: 10.1021/acsnano.2c06275.
  • Wamhoff EC, Ronsard L, Feldman J, et al. Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds. bioRxiv:Preprint Serv Biol. 2023. 2022.08.16.504128. doi: 10.1101/2022.08.16.504128
  • Li S, Liu Y, Tian T, et al. Bioswitchable delivery of microRNA by framework nucleic acids: application to bone regeneration. Small. 2021;17(47):e2104359–e2104359. doi: 10.1002/smll.202104359.
  • Kim F, Chen T, Burgess T, et al. Functionalized DNA nanostructures as scaffolds for guided mineralization. Chem Sci. 2019;10(45):10537–10542. doi: 10.1039/C9SC02811K.
  • Wu X, Liu Q, Liu F, et al. An RNA/DNA hybrid origami-based nanoplatform for efficient gene therapy. Nanoscale. 2021;13(30):12848–12853. doi: 10.1039/D1NR00517K.
  • Liu J, Song L, Liu S, et al. A tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors. Angew Chem Int Ed Engl. 2018;57(47):15486–15490. doi: 10.1002/anie.201809452.
  • Wu X, Yang C, Wang H, et al. Genetically encoded DNA origami for gene therapy in vivo. J Am Chem Soc. 2023;145(16):9343–9353. doi: 10.1021/jacs.3c02756.
  • Jun H, Shepherd TR, Zhang K, et al. Automated sequence design of 3D polyhedral wireframe DNA origami with honeycomb edges. ACS nano. 2019;13(2):2083–2093. doi: 10.1021/acsnano.8b08671.
  • Julin S, Keller A, Linko V. Dynamics of DNA Origami Lattices. Bioconjug Chem. 2023;34(1):18–29.
  • Zhou L, Chandrasekaran AR, Yan M, et al. A mini DNA-RNA hybrid origami nanobrick. Nanoscale Adv. 2021;3(14):4048–4051. doi: 10.1039/D1NA00026H.
  • Delebecque CJ, Lindner AB, Silver PA, et al. Organization of intracellular reactions with rationally designed RNA assemblies. Science. 2011;333(6041):470–474. doi: 10.1126/science.1206938.
  • Torelli E, Kozyra J, Shirt-Ediss B, et al. Cotranscriptional folding of a bio-orthogonal fluorescent scaffolded RNA origami. ACS Synth Biol. 2020;9(7):1682–1692. doi: 10.1021/acssynbio.0c00009.
  • Geary C, Rothemund PWK, Andersen ES. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science. 2014;345(6198):799–804.
  • Geary C, Grossi G, McRae EK, et al. RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat Chem. 2021;13(6):549–558. doi: 10.1038/s41557-021-00679-1.
  • Chopra A, Sagredo S, Grossi G, et al. Out-of-plane aptamer functionalization of RNA three-helix tiles. Nanomaterials. 2019;9(4):507.
  • Li M, Zheng M, Wu S, et al. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Nat Commun. 2018;9(1):2196. doi: 10.1038/s41467-018-04652-4.
  • Liu D, Geary CW, Chen G, et al. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat Chem. 2020;12(3):249–259. doi: 10.1038/s41557-019-0406-7.
  • McRae EKS, McRae EK, Rasmussen HØ, et al. Structure, folding and flexibility of co-transcriptional RNA origami. Nat Nanotechnol. 2023;18:10.1038/s41565-023-01321–6.
  • Jepsen MDE, Sparvath SM, Nielsen TB, et al. Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat Commun. 2018;9(1):18. doi: 10.1038/s41467-017-02435-x.
  • Nguyen MTA, Pothoulakis G, Andersen ES. Synthetic translational regulation by protein-binding RNA origami scaffolds. ACS Synth Biol. 2022;11(5):1710–1718.
  • Pothoulakis G, Nguyen MTA, Andersen ES. Utilizing RNA origami scaffolds in Saccharomyces cerevisiae for dCas9-mediated transcriptional control. Nucleic Acids Res. 2022;50(12):7176–7187.
  • Jasinski D, Haque F, Binzel DW, et al. Advancement of the emerging field of RNA nanotechnology. ACS nano. 2017;11(2):1142–1164. doi: 10.1021/acsnano.6b05737.
  • Zhu G, Song P, Wu J, et al. Application of nucleic acid frameworks in the construction of nanostructures and cascade biocatalysts: recent progress and perspective. Front Bioeng Biotechnol. 2022;9:792489.
  • Hu M, Feng C, Yuan Q, et al. Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression of colorectal cancer. Nat Commun. 2023;14(1):1307. doi: 10.1038/s41467-023-37020-y.
  • Krissanaprasit A, Key CM, Froehlich K, et al. Multivalent aptamer-functionalized single-strand RNA origami as effective, target-specific anticoagulants with corresponding reversal agents. Adv Healthc Mater. 2021;10(11):e2001826–e2001826. doi: 10.1002/adhm.202001826.
  • Sedlmayer F, Aubel D, Fussenegger M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat Biomed Eng. 2018;2(6):399–415.
  • Wong RS, Chen YY, Smolke CD. Regulation of T cell proliferation with drug-responsive microRNA switches. Nucleic Acids Res. 2018;46(3):1541–1552.
  • Stevens JT, Carothers JM. Designing RNA-based genetic control systems for efficient production from engineered metabolic pathways. ACS Synth Biol. 2015;4(2):107–115.
  • Li Y, Su Z, Zhao W, et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat Cancer. 2020;1(9):882–893. doi: 10.1038/s43018-020-0095-6.
  • Jung JK, Alam KK, Verosloff MS, et al. Cell-free biosensors for rapid detection of water contaminants. Nat Biotechnol. 2020;38(12):1451–1459. doi: 10.1038/s41587-020-0571-7.
  • Jung JK, Archuleta CM, Alam KK, et al. Programming cell-free biosensors with DNA strand displacement circuits. Nat Chem Biol. 2022;18(4):385–393. doi: 10.1038/s41589-021-00962-9.
  • Hong F, Šulc P. An emergent understanding of strand displacement in RNA biology. J Struct Biol. 2019;207(3):241–249.
  • Haley NEC, Ouldridge TE, Mullor Ruiz I, et al. Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nat Commun. 2020;11(1):2562. doi: 10.1038/s41467-020-16353-y.
  • Zhang DY, Winfree E. Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc. 2009;131(47):17303–17314.
  • Schaffter SW, Schulman R. Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules. Nat Chem. 2019;11(9):829–838.
  • Schaffter SW, Chen K-L, O’Brien J, et al. Standardized excitable elements for scalable engineering of far-from-equilibrium chemical networks. Nat Chem. 2022;14(11):1224–1232. doi: 10.1038/s41557-022-01001-3.
  • Qian L, Winfree E. Scaling up digital circuit computation with DNA strand displacement cascades. Science. 2011;332(6034):1196–1201.
  • Schaffter SW, Strychalski EA. Cotranscriptionally encoded RNA strand displacement circuits. Sci Adv. 2022;8(12):eabl4354–eabl4354.
  • Schaffter SW, Wintenberg ME, Murphy TM, et al. Design approaches to expand the toolkit for building cotranscriptionally encoded RNA strand displacement circuits. ACS Synth Biol. 2023;12(5):1546–1561. doi: 10.1021/acssynbio.3c00079.
  • Konstantakos V, Nentidis A, Krithara A, et al. CRISPR-Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Res. 2022;50(7):3616–3637. doi: 10.1093/nar/gkac192.
  • Li Y, Teng X, Zhang K, et al. RNA strand displacement responsive CRISPR/cas9 system for mRNA sensing. Anal Chem. 2019;91(6):3989–3996. doi: 10.1021/acs.analchem.8b05238.
  • Oesinghaus L, Simmel FC. Switching the activity of Cas12a using guide RNA strand displacement circuits. Nat Commun. 2019;10(1):2092.
  • Shi K, Xie S, Tian R, et al. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. Sci Adv. 2021;7(5):eabc7802. doi: 10.1126/sciadv.abc7802.
  • Frei T, Chang C-H, Filo M, et al. A genetic mammalian proportional-integral feedback control circuit for robust and precise gene regulation. Proc Natl Acad Sci U S A. 2022;119(24):e2122132119–e2122132119. doi: 10.1073/pnas.2122132119.
  • Gao XJ, Chong LS, Kim MS, et al. Programmable protein circuits in living cells. Science. 2018;361(6408):1252–1258. doi: 10.1126/science.aat5062.
  • Chen Z, Elowitz MB. Programmable protein circuit design. Cell. 2021;184(9):2284–2301.
  • Hu CY, Murray RM. Layered feedback control overcomes performance trade-off in synthetic biomolecular networks. Nat Commun. 2022;13(1):5393.
  • Chen R, Wang SK, Belk JA, et al. Engineering circular RNA for enhanced protein production. Nat Biotechnol. 2023;41(2):262–272. doi: 10.1038/s41587-022-01393-0.
  • He AT, Liu J, Li F, et al. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther. 2021;6(1):185. doi: 10.1038/s41392-021-00569-5.
  • Kameda S, Ohno H, Saito H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. 2023;51(4):e24–e24.
  • Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: the influence of morphology on biological fate. Appl Phys Rev. 2023;10(1):011304.
  • Sachdeva G, Garg A, Godding D, et al. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 2014;42(14):9493–9503. doi: 10.1093/nar/gku617.
  • Chworos A, Severcan I, Koyfman AY, et al. Building programmable jigsaw puzzles with RNA. Science. 2004;306(5704):2068–2072. doi: 10.1126/science.1104686.
  • Ghimire C, Wang H, Li H, et al. RNA nanoparticles as rubber for compelling vessel extravasation to enhance tumor targeting and for fast renal excretion to reduce toxicity. ACS nano. 2020;14(10):13180–13191. doi: 10.1021/acsnano.0c04863.
  • Li J, Zhao H, Zheng L, et al. Advances in synthetic biology and biosafety governance. Front Bioeng Biotechnol. 2021;9:598087.
  • Younas T, Liu C, Struwe WB, et al. Engineer RNA-protein nanowires as light-responsive biomaterials. Small. 2023;19(12):e2206513–e2206513. doi: 10.1002/smll.202206513.
  • Fern J, Schulman R. Modular DNA strand-displacement controllers for directing material expansion. Nat Commun. 2018;9(1):3766.
  • Dorsey PJ, Scalise D, Schulman R. A model of spatio-temporal regulation within biomaterials using DNA reaction-diffusion waveguides. R Soc Open Sci. 2022;9(8):220200.
  • Ahn SY, Kim J, Vellampatti S, et al. Protein-encoding free-standing RNA hydrogel for sub-compartmentalized translation. Adv Mater. 2022;34(18):e2110424–e2110424. doi: 10.1002/adma.202110424.
  • Gačanin J, Synatschke CV, Weil T. Biomedical applications of DNA-based hydrogels. Adv Funct Mater. 2020;30(4):1906253.
  • Liu J, Guo S, Cinier M, et al. Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS nano. 2011;5(1):237–246. doi: 10.1021/nn1024658.
  • Guo S, Li H, Ma M, et al. Size, shape, and sequence-dependent immunogenicity of RNA nanoparticles. Mol Ther Nucleic Acids. 2017;9:399–408.
  • Wang H, Ellipilli S, Lee W-J, et al. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance. J Control Release. 2021;330:173–184.
  • Wang W, Liu X, Ding L, et al. RNA hydrogel combined with MnO(2) nanoparticles as a nano-vaccine to treat triple negative breast cancer. Front Chem. 2021;9:797094.
  • Shinde SS, Ahmed S, Malik JA, et al. Therapeutic delivery of tumor suppressor miRNAs for breast cancer treatment. Biology (Basel). 2023;12(3):467. doi: 10.3390/biology12030467.
  • Ding L, Li J, Wu C, et al. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. J Mat Chem B. 2020;8(16):3527–3533. doi: 10.1039/C9TB01610D.
  • Ryder PV, Lerit DA. RNA localization regulates diverse and dynamic cellular processes. Traffic. 2018;19(7):496–502.
  • Kojima T, Takayama S. Membraneless compartmentalization facilitates enzymatic cascade reactions and reduces substrate inhibition. ACS Appl Mater Interfaces. 2018;10(38):32782–32791.
  • Banani SF, Lee HO, Hyman AA, et al. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18(5):285–298. doi: 10.1038/nrm.2017.7.
  • Boeynaems S, Chong S, Gsponer J, et al. Phase separation in biology and disease; current perspectives and open questions. J Mol Biol. 2023;435(5):167971. doi: 10.1016/j.jmb.2023.167971.
  • Henninger JE, Oksuz O, Shrinivas K, et al. RNA-mediated feedback control of transcriptional condensates. Cell. 2021;184(1):207–225.e24. doi: 10.1016/j.cell.2020.11.030.
  • Wei M-T, Chang Y-C, Shimobayashi SF, et al. Nucleated transcriptional condensates amplify gene expression. Nat Cell Biol. 2020;22(10):1187–1196. doi: 10.1038/s41556-020-00578-6.
  • O’Grady T, Njock M-S, Lion M, et al. Sorting and packaging of RNA into extracellular vesicles shape intracellular transcript levels. BMC Biol. 2022;20(1):72. doi: 10.1186/s12915-022-01277-4.
  • Henderson MC, Azorsa DO. The genomic and proteomic content of cancer cell-derived exosomes. Front Oncol. 2012;2:38.
  • Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–579.
  • Fabbiano F, Corsi J, Gurrieri E, et al. RNA packaging into extracellular vesicles: an orchestra of RNA-binding proteins? J Extracell Vesicles. 2020;10(2):e12043–e12043. doi: 10.1002/jev2.12043.
  • Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43–51.
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–383.
  • Wu D, Tao T, Eshraghian EA, et al. Extracellular RNA as a kind of communication molecule and emerging cancer biomarker. Front Oncol. 2022;12:960072.
  • Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63–78.
  • Yan E, Goyal G, Yildiz UH, et al. Colorimetric assaying of exosomal metabolic biomarkers. Molecules. 2023;28(4):1909.
  • Cone AS, York SB, Meckes DG Jr. Extracellular vesicles in Epstein-Barr virus pathogenesis. Curr Clinic Microbiol Rep. 2019;6(3):121–131.
  • Blenkiron C, Simonov D, Muthukaruppan A, et al. Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PloS one. 2016;11(8):e0160440–e0160440. doi: 10.1371/journal.pone.0160440.
  • Usman WM, Pham TC, Kwok YY, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018;9(1):2359. doi: 10.1038/s41467-018-04791-8.
  • Stranford DM, Simons LM, Berman KE, et al. Bioengineering multifunctional extracellular vesicles for targeted delivery of biologics to T cells. bioRxiv. 2022;2022.05.14.491879.
  • Wang C, Yang J, Lu Y. Modularize and unite: toward creating a functional artificial cell. Front Mol Biosci. 2021;8:781986.
  • Mann S. Systems of creation: the emergence of life from nonliving matter. Acc Chem Res. 2012;45(12):2131–2141.
  • Buddingh BC, Elzinga J, van Hest JCM. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat Commun. 2020;11(1):1652.
  • Heili JM, Stokes K, Gaut NJ, et al. Controlled exchange of protein and nucleic acid signals from and between synthetic minimal cells. bioRxiv. 2022;2022.01.03.474826.
  • Robinson AO, Lee J, Cameron A, et al. Cell-free expressed membraneless organelles sequester RNA in synthetic cells. bioRxiv. 2023. 2023.04.03.535479. doi: 10.1101/2023.04.03.535479
  • Ghosh B. Artificial cell design: reconstructing biology for life science applications. Emerging Topics Life Sci. 2022;6(6):619–627.
  • Boyd MA, Kamat NP. Designing artificial cells towards a new generation of biosensors. Trends Biotechnol. 2021;39(9):927–939.
  • Ding Y, Contreras-Llano LE, Morris E, et al. Minimizing context dependency of gene networks using artificial cells. ACS Appl Mater Interfaces. 2018;10(36):30137–30146. doi: 10.1021/acsami.8b10029.
  • Boyd MA, Thavarajah W, Lucks JB, et al. Robust and tunable performance of a cell-free biosensor encapsulated in lipid vesicles. Sci Adv. 2023;9(1):eadd6605–eadd6605. doi: 10.1126/sciadv.add6605.
  • Dwidar M, Seike Y, Kobori S, et al. Programmable artificial cells using histamine-responsive synthetic riboswitch. J Am Chem Soc. 2019;141(28):11103–11114. doi: 10.1021/jacs.9b03300.
  • O’Flaherty DK, Kamat NP, Mirza FN, et al. Copying of mixed-sequence RNA templates inside model protocells. J Am Chem Soc. 2018;140(15):5171–5178. doi: 10.1021/jacs.8b00639.
  • O’Flaherty DK, Zhou L, Szostak JW. Nonenzymatic template-directed synthesis of mixed-sequence 3’-NP-DNA up to 25 nucleotides long inside model protocells. J Am Chem Soc. 2019;141(26):10481–10488.
  • Zhang J, Fei Y, Sun L, et al. Advances and opportunities in RNA structure experimental determination and computational modeling. Nat Methods. 2022;19(10):1193–1207. doi: 10.1038/s41592-022-01623-y.
  • Townshend RJL, Eismann S, Watkins AM, et al. Geometric deep learning of RNA structure. Science. 2021;373(6558):1047–1051. doi: 10.1126/science.abe5650.
  • Ganser LR, Kelly ML, Herschlag D, et al. The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol. 2019;20(8):474–489. doi: 10.1038/s41580-019-0136-0.