1,883
Views
2
CrossRef citations to date
0
Altmetric
Review

Regulation and function of alternative polyadenylation in development and differentiation

ORCID Icon, , &
Pages 908-925 | Accepted 17 Oct 2023, Published online: 31 Oct 2023

References

  • Ule J, Blencowe BJ. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol Cell. 2019;76(2):329–345. doi: 10.1016/j.molcel.2019.09.017
  • Ren F, Zhang N, Zhang L, et al. Alternative polyadenylation: a new frontier in post transcriptional regulation. Biomark Res. 2020;8(1). doi: 10.1186/s40364-020-00249-6
  • Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet. 2019;20(10):599–614. doi: 10.1038/s41576-019-0145-z
  • Montes M, Sanford BL, Comiskey DF, et al. RNA splicing and disease: animal models to therapies. Trends Genet. 2019;35(1):68–87. doi: 10.1016/j.tig.2018.10.002
  • Wang X, Li J, Bian X, et al. CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc Natl Acad Sci, USA. 2021;118(33). doi: 10.1073/pnas.2012881118
  • Xue Z, Warren RL, Gibb EA, et al. Recurrent tumor-specific regulation of alternative polyadenylation of cancer-related genes. BMC Genomics. 2018;19(1). doi: 10.1186/s12864-018-4903-7
  • Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of canonical histone mRnas: life without a poly(A) tail. Nat Rev Genet. 2008;9(11):843–854. doi: 10.1038/nrg2438
  • Yang L, Duff MO, Graveley BR, et al. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 2011;12(2):R16. doi: 10.1186/gb-2011-12-2-r16
  • Levitt N, Briggs D, Gil A, et al. Definition of an efficient synthetic poly(A) site. Genes Dev. 1989;3(7):1019–1025. doi: 10.1101/gad.3.7.1019
  • Sun Y, Hamilton K, Tong L. Recent molecular insights into canonical pre-mRNA 3’-end processing. Transcription. 2020;11(2):83–96. doi: 10.1080/21541264.2020.1777047
  • Zhang Z, Gilmour DS. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA Polymerase II to the nascent transcript. Mol Cell. 2006;21(1):65–74. doi: 10.1016/j.molcel.2005.11.002
  • Jenal M, Elkon R, Loayza-Puch F, et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell. 2012;149(3):538–553. doi: 10.1016/j.cell.2012.03.022
  • Tang P, Yang Y, Li G, et al. Alternative polyadenylation by sequential activation of distal and proximal PolyA sites. Nat Struct Mol Biol. 2022;29(1):21–31. doi: 10.1038/s41594-021-00709-z
  • Zhang Y, Liu L, Qiu Q, et al. Alternative polyadenylation: methods, mechanism, function, and role in cancer. J Exp Clin Cancer Res. 2021;40(1):51. doi: 10.1186/s13046-021-01852-7
  • Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol. 2017;18(1):18–30. doi: 10.1038/nrm.2016.116
  • An JJ, Gharami K, Liao GY, et al. Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell. 2008;134(1):175–187. doi: 10.1016/j.cell.2008.05.045
  • Floor SN, Doudna JA. Tunable protein synthesis by transcript isoforms in human cells. Elife. 2016;5. doi: 10.7554/eLife.10921
  • Graham RR, Kyogoku C, Sigurdsson S, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A. 2007;104(16):6758–6763. doi: 10.1073/pnas.0701266104
  • Mayr C. What are 3′ utrs doing? Cold Spring Harb. Perspect Biol. 2019;11(10):a034728. doi: 10.1101/cshperspect.a034728
  • Alt FW, Bothwell ALM, Knapp M, et al. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRnas that differ at their 3′ ends. Cell. 1980;20(2):293–301. doi: 10.1016/0092-8674(80)90615-7
  • Early P, Rogers J, Davis M, et al. Two mRnas can be produced from a single immunoglobulin μ gene by alternative RNA processing pathways. Cell. 1980;20(2):313–319. doi: 10.1016/0092-8674(80)90617-0
  • Miura P, Shenker S, Andreu-Agullo C, et al. Widespread and extensive lengthening of 39 UTRs in the mammalian brain. Genome Res;2013. doi: 10.1101/gr.146886.112
  • Vallejos Baier R, Picao-Osorio J, Alonso CR. Molecular regulation of alternative polyadenylation (APA) within the Drosophila nervous system. J Mol Biol. 2017;429(21):3290–3300. doi: 10.1016/j.jmb.2017.03.028
  • Yang Y, Wu X, Yang W, et al. Dynamic alternative polyadenylation during iPSC differentiation into cardiomyocytes. Comput Struct Biotechnol J. 2022;20:5859–5869. doi: 10.1016/j.csbj.2022.10.025
  • Berry CW, Olivares GH, Gallicchio L, et al. Developmentally regulated alternate 3′ end cleavage of nascent transcripts controls dynamic changes in protein expression in an adult stem cell lineage. Genes Dev. 2022;36(15–16):916–935. doi: 10.1101/gad.349689.122
  • Liu D, Brockman JM, Dass B, et al. Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis. Nucleic Acids Res. 2007;35(1):234–246. doi: 10.1093/nar/gkl919
  • Zhang H, Lee JY, Tian B. Biased alternative polyadenylation in human tissues. Genome Biol. 2005;6(12):R100. doi: 10.1186/gb-2005-6-12-r100
  • Agarwal V, Lopez-Darwin S, Kelley DR, et al. The landscape of alternative polyadenylation in single cells of the developing mouse embryo. Nat Commun. 2021;12(1):5101. doi: 10.1038/s41467-021-25388-8
  • Lee S, Chen Y-C, Gillen AE, et al. Diverse cell-specific patterns of alternative polyadenylation in Drosophila. Nat Commun. 2022;13(1):5372. doi: 10.1038/s41467-022-32305-0
  • Yang SW, Li L, Connelly JP, et al. A cancer-specific ubiquitin ligase drives mRNA alternative polyadenylation by ubiquitinating the mRNA 3′ end processing complex. Mol Cell. 2020;77(6):1206–1221.e7. doi: 10.1016/j.molcel.2019.12.022
  • Song J, Nabeel-Shah S, Pu S, et al. Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1. Mol Cell. 2022;82(17):3135–3150.e9. doi: 10.1016/j.molcel.2022.06.031
  • Nanavaty V, Abrash EW, Hong C, et al. DNA methylation regulates alternative polyadenylation via CTCF and the cohesin complex. Mol Cell. 2020;78(4):752–764.e6. doi: 10.1016/j.molcel.2020.03.024
  • Hilgers V, Lemke SB, Levine M. ELAV mediates 3′ UTR extension in the Drosophila nervous system. Genes Dev. 2012;26(20):2259–2264. doi: 10.1101/gad.199653.112
  • Oktaba K, Zhang W, Lotz TS, et al. ELAV links paused pol II to alternative polyadenylation in the Drosophila. Nervous Sys Mol Cell. 2015;57:341–348.
  • Sena RM, Twiss JL, Gardiner AS, et al. The RNA-Binding protein HuD regulates alternative splicing and alternative polyadenylation in the mouse neocortex. Molecules. 2021;26(10):2836. doi: 10.3390/molecules26102836
  • Chatrikhi R, Mallory MJ, Gazzara MR, et al. RNA binding protein CELF2 regulates signal-induced alternative polyadenylation by competing with enhancers of the polyadenylation machinery. Cell Re. 2019;28(11):2795–2806.e3. doi: 10.1016/j.celrep.2019.08.022
  • Gawande B, Robida MD, Rahn A, et al. Drosophila Sex-lethal protein mediates polyadenylation switching in the female germline. EMBO J. 2006;25(6):1263–1272. doi: 10.1038/sj.emboj.7601022
  • Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 2018;14(5):e1007412. doi: 10.1371/journal.pgen.1007412
  • Ke S, Alemu EA, Mertens C, et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 2015;29(19):2037–2053. doi: 10.1101/gad.269415.115
  • Martinez NM, Su A, Burns MC, et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol Cell. 2022;82(3):645–659.e9. doi: 10.1016/j.molcel.2021.12.023
  • Pereira-Castro I, Moreira A. On the function and relevance of alternative 3′-UTRs in gene expression regulation. WIREs RNA. 2021;12(5):e1653. doi: 10.1002/wrna.1653
  • Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol. 2022;23(12):779–796. doi: 10.1038/s41580-022-00507-5
  • Brumbaugh J, Di Stefano B, Wang X, et al. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling. Cell. 2018;172(1–2):106–120.e21. doi: 10.1016/j.cell.2017.11.023
  • Li W, You B, Hoque M, et al. Systematic profiling of poly(A)+ transcripts modulated by core 3’end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet. 2015;11(4):e1005166. doi: 10.1371/journal.pgen.1005166
  • Ogorodnikov A, Levin M, Tattikota S, et al. Transcriptome 3′end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma. Nat Commun. 2018;9(1). doi: 10.1038/s41467-018-07580-5
  • Turner RE, Henneken LM, Liem-Weits M, et al. Requirement for cleavage factor IIm in the control of alternative polyadenylation in breast cancer cells. RNA. 2020;26(8):969–981. doi: 10.1261/rna.075226.120
  • Zhu Y, Wang X, Forouzmand E, et al. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol Cell. 2018;69(1):62–74.e4. doi: 10.1016/j.molcel.2017.11.031
  • Xia Z, Donehower LA, Cooper TA, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types. Nat Commun. 2014;5(1):5274. doi: 10.1038/ncomms6274
  • Davis AG, Johnson DT, Zheng D, et al. Alternative polyadenylation dysregulation contributes to the differentiation block of acute myeloid leukemia. Blood. 2022;139(3):424–438. doi: 10.1182/blood.2020005693
  • Caggiano C, Pieraccioli M, Pitolli C, et al. The androgen receptor couples promoter recruitment of RNA processing factors to regulation of alternative polyadenylation at the 3’end of transcripts. Nucleic Acids Res. 2022;50(17):9780–9796. doi: 10.1093/nar/gkac737
  • Li W, Li W, Laishram RS, et al. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases. Nucleic Acids Res. 2017;45(15):8930–8942. doi: 10.1093/nar/gkx560
  • Gruber AR, Martin G, Keller W, et al. Cleavage factor im is a key regulator of 3′ UTR length. RNA Biol. 2012;9(12):1405–1412. doi: 10.4161/rna.22570
  • Richard P, Vethantham V, Manley JL. Roles of sumoylation in mRNA processing and metabolism BT - SUMO regulation of cellular processes. V. G. Wilson, edited by. Cham: Springer International Publishing; 2017. pp. 15–33.
  • Ji Z, Luo W, Li W, et al. Transcriptional activity regulates alternative cleavage and polyadenylation. Mol Syst Biol. 2011;7(1):534. doi: 10.1038/msb.2011.69
  • Liu X, Freitas J, Zheng D, et al. Transcription elongation rate has a tissue-specific impact on alternative cleavage and polyadenylation in Drosophila melanogaster. RNA. 2017;23(12):1807–1816. doi: 10.1261/rna.062661.117
  • Pinto PAB, Henriques T, Freitas MO, et al. RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J. 2011;30(12):2431–2444. doi: 10.1038/emboj.2011.156
  • LaBella ML, Hujber EJ, Moore KA, et al. Casein kinase 1δ stabilizes mature axons by inhibiting transcription termination of Ankyrin. Dev Cell. 2020;52(1):88–103.e18. doi: 10.1016/j.devcel.2019.12.005
  • Alfonso-Gonzalez C, Legnini I, Holec S, et al. Sites of transcription initiation drive mRNA isoform selection. Cell. 2023;186(11):2438–2455.e22. doi: 10.1016/j.cell.2023.04.012
  • Nimura K, Yamamoto M, Takeichi M, et al. Regulation of alternative polyadenylation by Nkx2-5 and Xrn2 during mouse heart development. Elife. 2016;5:e16030.
  • You L-Y, Lin J, Xu H-W, et al. Intragenic heterochromatin-mediated alternative polyadenylation modulates miRNA and pollen development in rice. New Phytol. 2021;232(2):835–852. doi: 10.1111/nph.17635
  • Kwon B, Fansler MM, Patel ND, et al. Enhancers regulate 3′ end processing activity to control expression of alternative 3′UTR isoforms. Nat Commun. 2022;13(1):2709. doi: 10.1038/s41467-022-30525-y
  • Mayr C, Bartel DP. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–684. doi: 10.1016/j.cell.2009.06.016
  • Mansfield KD, Keene JD. Neuron-specific ELAV/Hu proteins suppress HuR mRNA during neuronal differentiation by alternative polyadenylation. Nucleic Acids Res. 2012;40(6):2734–2746. doi: 10.1093/nar/gkr1114
  • Ciolli Mattioli C, Rom A, Franke V, et al. Alternative 3′ UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Res. 2019;47(5):2560–2573. doi: 10.1093/nar/gky1270
  • Sandberg R, Neilson JR, Sarma A, et al. Proliferating cells express mRnas with shortened 3’ untranslated regions and fewer MicroRNA target sites. Science. 2008;80-.). 320(5883):1643–1647. doi: 10.1126/science.1155390
  • Domingues RG, Lago-Baldaia I, Pereira-Castro I, et al. CD5 expression is regulated during human T-cell activation by alternative polyadenylation, PTBP1, and miR-204. Eur J Immunol. 2016;46(6):1490–1503. doi: 10.1002/eji.201545663
  • Gruber AR, Martin G, Müller P, et al. Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells. Nat Commun. 2014;5(1):5465. doi: 10.1038/ncomms6465
  • Li W, Park JY, Zheng D, et al. Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biol. 2016;14(1). doi: 10.1186/s12915-016-0229-6
  • Shan L, Wu C, Chen D, et al. Regulators of alternative polyadenylation operate at the transition from mitosis to meiosis. J Genet Genomics. 2017;44(2):95–106. doi: 10.1016/j.jgg.2016.12.007
  • Lau AG, Irier HA, Gu J, et al. Distinct 3′UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc Natl Acad Sci. 2010;107(36):15945–15950. doi: 10.1073/pnas.1002929107
  • Blair JD, Hockemeyer D, Doudna JA, et al. Widespread Translational Remodeling during Human Neuronal Differentiation. Cell Rep. 2017;21(7):2005–2016. doi: 10.1016/j.celrep.2017.10.095
  • Berkovits BD, Mayr C. Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature. 2015;522(7556):363–367. doi: 10.1038/nature14321
  • Pelka GJ, Watson CM, Christodoulou J, et al. Distinct expression profiles of Mecp2 transcripts with different lengths of 3′UTR in the brain and visceral organs during mouse development. Genomics. 2005;85(4):441–452. doi: 10.1016/j.ygeno.2004.12.002
  • Mullaney BC, Johnston MV, Blue ME. Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience. 2004;123(4):939–949. doi: 10.1016/j.neuroscience.2003.11.025
  • Costessi L, Devescovi G, Baralle FE, et al. Brain-specific promoter and polyadenylation sites of the -adducin pre-mRNA generate an unusually long 3’-UTR. Nucleic Acids Res. 2006;34(1):243–253. doi: 10.1093/nar/gkj425
  • Hilgers V, Perry MW, Hendrix D, et al. Neural-specific elongation of 3′ UTRs during Drosophila development. Proc Natl Acad Sci. 2011;108(38):15864–15869. doi: 10.1073/pnas.1112672108
  • Sanfilippo P, Wen J, Lai EC. Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species. Genome Biol. 2017;18(1):229. doi: 10.1186/s13059-017-1358-0
  • Smibert P, Miura P, Westholm JO, et al. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep. 2012;1(3):277–289. doi: 10.1016/j.celrep.2012.01.001
  • Ji Z, Lee JY, Pan Z, et al. Progressive lengthening of 3′ untranslated regions of mRnas by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci. 2009;106(17):7028–7033. doi: 10.1073/pnas.0900028106
  • Shepard PJ, Choi EA, Lu J, et al. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA. 2011;17(4):761–772. doi: 10.1261/rna.2581711
  • Ulitsky I, Shkumatava A, Jan CH, et al. Extensive alternative polyadenylation during zebrafish development. Genome Res. 2012;22(10):2054–2066. doi: 10.1101/gr.139733.112
  • Tushev G, Glock C, Heumüller M, et al. Alternative 3′ UTRs modify the localization, regulatory potential, stability, and plasticity of mRnas in neuronal compartments. Neuron. 2018;98(3):495–511.e6. doi: 10.1016/j.neuron.2018.03.030
  • Vicario A, Colliva A, Ratti A, et al. Dendritic targeting of short and long 3′ UTR BDNF mRNA is regulated by BDNF or NT-3 and distinct sets of RNA-binding proteins. Front Mol Neurosci. 2015;8: doi: 10.3389/fnmol.2015.00062
  • Yudin D, Hanz S, Yoo S, et al. Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron. 2008;59(2):241–252. doi: 10.1016/j.neuron.2008.05.029
  • Bae B, Gruner HN, Lynch M, et al. Elimination of Calm1 long 3′-UTR mRNA isoform by CRISPR–Cas9 gene editing impairs dorsal root ganglion development and hippocampal neuron activation in mice. RNA. 2020;26(10):1414–1430. doi: 10.1261/rna.076430.120
  • Andreassi C, Luisier R, Crerar H, et al. Cytoplasmic cleavage of IMPA1 3′ UTR is necessary for maintaining axon integrity. Cell Rep. 2021;34(8):108778. doi: 10.1016/j.celrep.2021.108778
  • Crerar H, Scott-Solomon E, Bodkin-Clarke C, et al. Regulation of NGF Signaling by an Axonal Untranslated mRNA. Neuron. 2019;102(3):553–563.e8. doi: 10.1016/j.neuron.2019.02.011
  • Li H, Janssens J, De Waegeneer M, et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science. 2023a;80-.). 375:eabk2432.
  • Lianoglou S, Garg V, Yang JL, et al. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev. 2013;27(21):2380–2396. doi: 10.1101/gad.229328.113
  • Hoque M, Ji Z, Zheng D, et al. Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods. 2013;10(2):133–139. doi: 10.1038/nmeth.2288
  • Ji Z, Tian B, Valcarcel J. Reprogramming of 3′ untranslated regions of mRnas by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One. 2009;4(12):e8419. doi: 10.1371/journal.pone.0008419
  • Vest KE, Paskavitz AL, Lee JB, et al. Dynamic changes in copper homeostasis and post-transcriptional regulation of Atp7a during myogenic differentiation†. Metallomics. 2018;10(2):309–322. doi: 10.1039/C7MT00324B
  • Raz V, Riaz M, Tatum Z, et al. ’t Hoen, 2018 the distinct transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs. FASEB J. 2018;32(3):1579–1590. doi: 10.1096/fj.201700861R
  • Kuang S, Kuroda K, Le Grand F, et al. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007;129(5):999–1010. doi: 10.1016/j.cell.2007.03.044
  • Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol. 2015;44:115–125. doi: 10.1016/j.semcdb.2015.09.017
  • Boutet SC, Cheung TH, Quach NL, et al. Alternative polyadenylation mediates MicroRNA regulation of muscle stem cell function. Cell Stem Cell. 2012;10(3):327–336. doi: 10.1016/j.stem.2012.01.017
  • Vorobyov E, Horst J. Expression of two protein isoforms of PAX7 is controlled by competing cleavage-polyadenylation and splicing. Gene. 2004;342(1):107–112. doi: 10.1016/j.gene.2004.07.030
  • de Morree A, Klein JDD, Gan Q, et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science. 2019;80-.). 366(6466):734–738. doi: 10.1126/science.aax1694
  • Anvar SY, Raz Y, Verwey N, et al. A decline in PABPN1 induces progressive muscle weakness in Oculopharyngeal muscle dystrophy and in muscle aging. Aging. 2013;5(6):412–426. doi: 10.18632/aging.100567
  • Mei H, Boom J, el Abdellaoui S, et al. Alternative polyadenylation utilization results in Ribosome assembly and mRNA translation deficiencies in a model for muscle aging. J Gerontol Ser A. 2022;77(6):1130–1140. doi: 10.1093/gerona/glac058
  • Smith SS, Kessler CB, Shenoy V, et al. IGF-I 3′ untranslated region: strain-specific polymorphisms and motifs regulating IGF-I in Osteoblasts. Endocrinology. 2013;154(1):253–262. doi: 10.1210/en.2012-1476
  • Khajuria DK, Nowak I, Leung M, et al. Transcript shortening via alternative polyadenylation promotes gene expression during fracture healing. Bone Res. 2023;11(1):5. doi: 10.1038/s41413-022-00236-7
  • Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 1997;25(13):2547–2561. doi: 10.1093/nar/25.13.2547
  • Peterson ML. Immunoglobulin heavy chain gene regulation through polyadenylation and splicing competition. WIREs RNA. 2011;2(1):92–105. doi: 10.1002/wrna.36
  • Rogers J, Early P, Carter C, et al. Two mRnas with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin μ chain. Cell. 1980;20(2):303–312. doi: 10.1016/0092-8674(80)90616-9
  • Takagaki Y, Seipelt RL, Peterson ML, et al. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell. 1996;87(5):941–952. doi: 10.1016/S0092-8674(00)82000-0
  • Takagaki Y, Manley JL. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell. 1998;2(6):761–771. doi: 10.1016/S1097-2765(00)80291-9
  • Edwalds-Gilbert G, Milcarek C. Regulation of poly(A) site use during mouse B-Cell development involves a change in the binding of a general polyadenylation factor in a B-Cell stage-specific manner. Mol Cell Biol. 1995;15(11):6420–6429. doi: 10.1128/MCB.15.11.6420
  • Martincic K, Campbell R, Edwalds-Gilbert G, et al. Increase in the 64-kDa subunit of the polyadenylation/cleavage stimulatory factor during the G0 to S phase transition. Proc Natl Acad Sci. 1998;95(19):11095–11100. doi: 10.1073/pnas.95.19.11095
  • Pai AA, Baharian G, Pagé Sabourin A, et al. Widespread shortening of 3’ untranslated regions and increased exon inclusion are evolutionarily conserved features of innate immune responses to infection. PLoS Genet. 2016;12(9):e1006338. doi: 10.1371/journal.pgen.1006338
  • Jia X, Yuan S, Wang Y, et al. The role of alternative polyadenylation in the antiviral innate immune response. Nat Commun. 2017;8(1):14605. doi: 10.1038/ncomms14605
  • Kalam H, Fontana MF, Kumar D, et al. Alternate splicing of transcripts shape macrophage response to mycobacterium tuberculosis infection. PLOS Pathog. 2017;13(3):e1006236. doi: 10.1371/journal.ppat.1006236
  • Chuvpilo S, Zimmer M, Kerstan A, et al. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity. 1999;10(2):261–269. doi: 10.1016/S1074-7613(00)80026-6
  • Li K, Qiang M, Xu Y. Cell-type-specific alternative polyadenylation as a therapeutic biomarker in lung cancer progression. Mol Ther Nucleic Acids. 2023b;34:102030. doi: 10.1016/j.omtn.2023.102030
  • Venkat S, Tisdale AA, Schwarz JR, et al. Alternative polyadenylation drives oncogenic gene expression in pancreatic ductal adenocarcinoma. Genome Res. 2020;30(3):347–360. doi: 10.1101/gr.257550.119
  • Ye W, Lian Q, Ye C, et al. A survey on Methods for predicting polyadenylation sites from DNA sequences, bulk RNA-seq, and single-cell RNA-seq. Genomics Proteomics Bioinf. 2023;21(1):67–83. doi: 10.1016/j.gpb.2022.09.005
  • Legnini I, Alles J, Karaiskos N, et al. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat Methods. 2019;16(9):879–886. doi: 10.1038/s41592-019-0503-y
  • Wang J, Chen W, Yue W, et al. Comprehensive mapping of alternative polyadenylation site usage and its dynamics at single-cell resolution. Proc Natl Acad Sci, USA. 2022;119(49):e2113504119. doi: 10.1073/pnas.2113504119
  • Kim N, Chung W, Eum HH, et al. Alternative polyadenylation of single cells delineates cell types and serves as a prognostic marker in early stage breast cancer. PLoS One. 2019;14(5):e0217196. doi: 10.1371/journal.pone.0217196
  • Ye C, Zhou Q, Hong Y, et al. Role of alternative polyadenylation dynamics in acute myeloid leukaemia at single-cell resolution. RNA Biol. 2019;16(6):785–797. doi: 10.1080/15476286.2019.1586139