1,916
Views
0
CrossRef citations to date
0
Altmetric
Review

Discovering microproteins: making the most of ribosome profiling data

, , &
Pages 943-954 | Accepted 30 Oct 2023, Published online: 27 Nov 2023

References

  • Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–95.
  • Basrai MA, Hieter P, Boeke JD. Small open reading frames: beautiful needles in the haystack. Genome Res. 1997;7(8):768–771. doi: 10.1101/gr.7.8.768
  • van Heesch S, van Iterson M, Jacobi J, et al. Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 2014;15(1):R6. doi: 10.1186/gb-2014-15-1-r6
  • Mueller PP, Hinnebusch AG. Multiple upstream AUG codons mediate translational control of GCN4. Cell. 1986;45(2):201–207. doi: 10.1016/0092-8674(86)90384-3
  • Huang N, Li F, Zhang M, et al. An upstream open reading frame in phosphatase and tensin homolog encodes a circuit breaker of lactate metabolism. Cell Metab. 2021;33(2):454.
  • Chen J, Brunner A-D, Cogan JZ, et al. Pervasive functional translation of noncanonical human open reading frames. Science. 2020;367(6482):1140–1146.
  • Parola AL, Kobilka BK. The peptide product of a 5’ leader cistron in the beta 2 adrenergic receptor mRNA inhibits receptor synthesis. J Biol Chem. 1994;269(6):4497–4505. doi: 10.1016/S0021-9258(17)41806-0
  • Ingolia NT, Ghaemmaghami S, Newman JRS, et al. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324(5924):218–223.
  • Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell. 2011;147(4):789–802. doi: 10.1016/j.cell.2011.10.002
  • Schafer S, Adami E, Heinig M, et al. Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat Commun. 2015;6(1):7200.
  • van Heesch S, Witte F, Schneider-Lunitz V, et al. The translational landscape of the human heart. Cell. 2019;178:242–60.e29. doi: 10.1016/j.cell.2019.05.010
  • Chothani S, Adami E, Ouyang JF, et al. deltaTE: detection of translationally regulated genes by Integrative analysis of Ribo-seq and RNA-seq data. Curr Protoc Mol Biol. 2019;129:e108. doi: 10.1002/cpmb.108
  • Guttman M, Russell P, Ingolia NT, et al. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell. 2013;154(1):240–251.
  • Ingolia NT, Brar GA, Stern-Ginossar N, et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 2014;8(5):1365–1379.
  • Calviello L, Ohler U. Beyond read-counts: ribo-seq data analysis to understand the functions of the transcriptome. Trends Genet. 2017;33:728–744. doi: 10.1016/j.tig.2017.08.003
  • Plaza S, Menschaert G, Payre F. In search of lost small peptides. Annu Rev Cell Dev Biol. 2017;33(1):391–416. doi: 10.1146/annurev-cellbio-100616-060516
  • Couso J-P, Patraquim P. Classification and function of small open reading frames. Nat Rev Mol Cell Biol. 2017;18(9):575–589. doi: 10.1038/nrm.2017.58
  • Ingolia NT; Ingolia NT. Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet. 2014;15(3):205–213. doi: 10.1038/nrg3645
  • Ruiz-Orera J, Messeguer X, Subirana JA, et al. Long non-coding RNAs as a source of new peptides. Elife. 2014;3:e03523. doi: 10.7554/eLife.03523
  • Carja O, Xing T, Wallace EWJ, et al. Riboviz: analysis and visualization of ribosome profiling datasets. BMC Bioinf. 2017;18(1):461.
  • Liu Q, Shvarts T, Sliz P, et al. RiboToolkit: an integrated platform for analysis and annotation of ribosome profiling data to decode mRNA translation at codon resolution. Nucleic Acids Res. 2020;48(W1):W218–29.
  • Lauria F, Tebaldi T, Bernabò P, et al. riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. PLoS Comput Biol. 2018;14(8):e1006169.
  • Chung BY, Hardcastle TJ, Jones JD, et al. The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis. RNA. 2015;21(10):1731–1745.
  • Brar GA, Weissman JS. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol. 2015;16(11):651–664. doi: 10.1038/nrm4069
  • Brunet MA, Brunelle M, Lucier J-F, et al. OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes. Nucleic Acids Res. 2019;47:D403–10. doi: 10.1093/nar/gky936
  • Wethmar K, Barbosa-Silva A, Andrade-Navarro MA, et al. uORFdb–a comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res. 2014;42:D60–7. doi: 10.1093/nar/gkt952
  • Manske F, Ogoniak L, Jürgens L, et al. The new uOrfdb: integrating literature, sequence, and variation data in a central hub for uORF research. Nucleic Acids Res. 2023;51(D1):D328–36.
  • Choteau SA, Wagner A, Pierre P, et al., MetamORF: a repository of unique short open reading frames identified by both experimental and computational approaches for gene and metagene analyses. Database [Internet]. 2021;2021. Available from 10.1093/database/baab032.
  • Mudge JM, Ruiz-Orera J, Prensner JR, et al. Standardized annotation of translated open reading frames. Nat Biotechnol. 2022;40(7):994–999.
  • Li Y, Zhou H, Chen X, et al. SmProt: a reliable repository with comprehensive annotation of small proteins identified from ribosome profiling. Int J Genomics Proteomics. 2021;19(4):602–610.
  • Chothani SP, Adami E, Widjaja AA, et al. A high-resolution map of human RNA translation. Mol Cell. 2022;82(15):2885–99.e8.
  • Olexiouk V, Van Criekinge W, Menschaert G. An update on sOrfs.Org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res. 2018;46(D1):D497–502. doi: 10.1093/nar/gkx1130
  • Consortium U, Martin M-J, Orchard S. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–31. doi: 10.1093/nar/gkac1052
  • O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45.
  • Gerashchenko MV, Lobanov AV, Gladyshev VN. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc Natl Acad Sci U S A. 2012;109(43):17394–17399. doi: 10.1073/pnas.1120799109
  • Halpin JC, Jangi R, Street TO. Multimapping confounds ribosome profiling analysis: a case-study of the Hsp90 molecular chaperone. Proteins. 2020;88(1):57–68. doi: 10.1002/prot.25766
  • Ingolia NT, Brar GA, Rouskin S, et al. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7(8):1534–1550.
  • CC-C W, Zinshteyn B, Wehner KA, et al. High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Mol Cell. 2019;73:959–70.e5. doi: 10.1016/j.molcel.2018.12.009
  • Lareau LF, Hite DH, Hogan GJ, et al. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. Elife. 2014;3:e01257. doi: 10.7554/eLife.01257
  • Martinez TF, Chu Q, Donaldson C, et al. Accurate annotation of human protein-coding small open reading frames. Nat Chem Biol. 2020;16(4):458–468.
  • Varenne S, Buc J, Lloubes R, et al. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol. 1984;180(3):549–576.
  • Tuller T, Carmi A, Vestsigian K, et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell. 2010;141(2):344–354.
  • Weinberg DE, Shah P, Eichhorn SW, et al. Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep. 2016;14(7):1787–1799.
  • Koh M, Ahmad I, Ko Y, et al. A short ORF-encoded transcriptional regulator. Proc Natl Acad Sci U S A. 2021;118(4):118. doi: 10.1073/pnas.2021943118
  • Michel AM, Choudhury KR, Firth AE, et al. Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res. 2012;22(11):2219–2229.
  • Chew G-L, Pauli A, Rinn JL, et al. Ribosome profiling reveals resemblance between long non-coding RNAs and 5’ leaders of coding RNAs. Development. 2013;140:2828–2834. doi: 10.1242/dev.098343
  • Calviello L, Mukherjee N, Wyler E, et al. Detecting actively translated open reading frames in ribosome profiling data. Nat Methods. 2016;13(2):165–170.
  • Chun SY, Rodriguez CM, Todd PK, et al. Spectre: a spectral coherence–based classifier of actively translated transcripts from ribosome profiling sequence data. BMC Bioinf. 2016;17:482. doi: 10.1186/s12859-016-1355-4
  • Ji Z, Song R, Regev A, et al. Many lncRnas, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins. Elife. 2015;4:e08890. doi: 10.7554/eLife.08890
  • Xu Z, Hu L, Shi B, et al. Ribosome elongating footprints denoised by wavelet transform comprehensively characterize dynamic cellular translation events. Nucleic Acids Res. 2018;46(18):e109.
  • Song B, Jiang M, Gao L. RiboNT: a noise-tolerant predictor of open reading frames from ribosome-protected footprints. Life. 2021;11:701. doi: 10.3390/life11070701.
  • Bazzini AA, Johnstone TG, Christiano R, et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 2014;33(9):981–993.
  • Erhard F, Halenius A, Zimmermann C, et al. Improved Ribo-seq enables identification of cryptic translation events. Nat Methods. 2018;15(5):363–366.
  • Raj A, Wang SH, Shim H, et al. Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling. eLife [Internet]. 2016;5. doi: 10.7554/eLife.13328
  • Malone B, Atanassov I, Aeschimann F, et al. Bayesian prediction of RNA translation from ribosome profiling. Nucleic Acids Res. 2017;45:2960–2972. doi: 10.1093/nar/gkw1350
  • Cao X, Slavoff SA. Non-AUG start codons: expanding and regulating the small and alternative ORFeome. Exp Cell Res. 2020;391(1):111973. doi: 10.1016/j.yexcr.2020.111973
  • Mackowiak SD, Zauber H, Bielow C, et al. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol. 2015;16(1):179.
  • Johnstone TG, Bazzini AA, Giraldez AJ. Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J. 2016;35(7):706–723. doi: 10.15252/embj.201592759
  • Zhang P, He D, Xu Y, et al. Genome-wide identification and differential analysis of translational initiation. Nat Commun. 2017;8(1):1749.
  • Lee S, Liu B, Lee S, et al. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci U S A. 2012;109(37):E2424–32.
  • Gao X, Wan J, Liu B, et al. Quantitative profiling of initiating ribosomes in vivo. Nat Methods. 2015;12(2):147–153.
  • Fritsch C, Herrmann A, Nothnagel M, et al. Genome-wide search for novel human uOrfs and N-terminal protein extensions using ribosomal footprinting. Genome Res. 2012;22(11):2208–2218.
  • Fields AP, Rodriguez EH, Jovanovic M, et al. A regression-based analysis of ribosome-profiling data reveals a conserved complexity to mammalian translation. Mol Cell. 2015;60(5):816–827.
  • Ichihara K, Matsumoto A, Nishida H, et al. Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Res. 2021;49(13):7298–7317.
  • Collins JE, White S, Searle SMJ, et al. Incorporating RNA-seq data into the zebrafish Ensembl genebuild. Genome Res. 2012;22(10):2067–2078.
  • Hsu PY, Calviello L, Wu H-Y, et al. Super-resolution ribosome profiling reveals unannotated translation events in. Proc Natl Acad Sci U S A. 2016;113:E7126–35. doi: 10.1073/pnas.1614788113
  • Kiniry SJ, Judge CE, Michel AM, et al. Trips-Viz: an environment for the analysis of public and user-generated ribosome profiling data. Nucleic Acids Res. 2021;49(W1):W662–70.
  • Hao Y, Zhang L, Niu Y, et al. SmProt: a database of small proteins encoded by annotated coding and non-coding RNA loci. Brief Bioinform. 2018;19:636–643. doi: 10.1093/bib/bbx005
  • Olexiouk V, Crappé J, Verbruggen S, et al. sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res. 2016;44(D1):D324–9.
  • Ye Y, Liang Y, Yu Q, et al. Analysis of human upstream open reading frames and impact on gene expression. Hum Genet. 2015;134(6):605–612.
  • Ho L, van Dijk M, Chye STJ, et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 2017;357:707–713. doi: 10.1126/science.aam6607
  • Bi P, Ramirez-Martinez A, Li H, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356(6335):323–327.
  • Zhang Q, Vashisht AA, O’Rourke J, et al. The microprotein Minion controls cell fusion and muscle formation. Nat Commun. 2017;8(1):15664.
  • Quinn ME, Goh Q, Kurosaka M, et al. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun. 2017;8(1):15665.
  • Magny EG, Pueyo JI, Pearl FMG, et al. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science. 2013;341(6150):1116–1120.
  • Anderson DM, Anderson KM, Chang C-L, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160(4):595–606.
  • Lee CQE, Kerouanton B, Chothani S, et al. Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nat Commun. 2021;12(1):2130.
  • Zhang S, Reljić B, Liang C, et al. Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly. Nat Commun. 2020;11(1):1312.
  • Lee C, Zeng J, Drew BG, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21(3):443–454.
  • Morris DR, Geballe AP. Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol. 2000;20(23):8635–8642. doi: 10.1128/MCB.20.23.8635-8642.2000
  • Calvo SE, Pagliarini DJ, Mootha VK. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A. 2009;106(18):7507–7512. doi: 10.1073/pnas.0810916106
  • Starck SR, Tsai JC, Chen K, et al. Translation from the 5’ untranslated region shapes the integrated stress response. Science. 2016;351:aad3867. doi: 10.1126/science.aad3867
  • Hinnebusch AG. Translational regulation of Yeast GCN4: a window on factors that control initiator-tRNA binding to the ribosome *. J Biol Chem. 1997;272(35):21661–21664. doi: 10.1074/jbc.272.35.21661
  • Andreev DE, O’Connor PBF, Fahey C, et al. Translation of 5’ leaders is pervasive in genes resistant to eIF2 repression. Elife. 2015;4:e03971. doi: 10.7554/eLife.03971
  • Chothani S, Schäfer S, Adami E, et al. Widespread translational control of fibrosis in the human heart by RNA-Binding proteins. Circulation. 2019;140(11):937–951.
  • Wu Q, Wright M, Gogol MM, et al. Translation of small downstream ORFs enhances translation of canonical main open reading frames. EMBO J [Internet]. 2020 [[cited 2023 Mar 15]];39. doi: 10.15252/embj.2020104763
  • Chong C, Müller M, Pak H, et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat Commun. 2020;11(1):1293.
  • Whiffin N, Karczewski KJ, Zhang X, et al. Characterising the loss-of-function impact of 5’ untranslated region variants in 15,708 individuals. Nat Commun. 2020;11(1):2523.
  • Soukarieh O, Meguerditchian C, Proust C, et al. Common and rare 5’UTR variants altering upstream open reading frames in cardiovascular genomics. Front Cardiovasc Med. 2022;9:841032. doi: 10.3389/fcvm.2022.841032
  • Wang L, Park HJ, Dasari S, et al. CPAT: Coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41:e74. doi: 10.1093/nar/gkt006
  • Washietl S, Findeiss S, Müller SA, et al. RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA. 2011;17(4):578–594.
  • Clauwaert J, McVey Z, Gupta R, et al. TIS transformer: remapping the human proteome using deep learning. NAR Genom Bioinform. 2023;5:lqad021. doi: 10.1093/nargab/lqad021
  • Nabi A, Dilekoglu B, Adebali O, et al. Discovering misannotated lncRnas using deep learning training dynamics. Bioinformatics [Internet]. 2023 [cited 2023 Mar 19];39(1). doi: 10.1093/bioinformatics/btac821.
  • Zheng EB, Zhao L. Protein evidence of unannotated ORFs in Drosophila reveals diversity in the evolution and properties of young proteins. eLife [Internet]. 2022;11:11. doi: 10.7554/eLife.78772.
  • Lu S, Zhang J, Lian X, et al. A hidden human proteome encoded by “non-coding” genes. Nucleic Acids Res. 2019;47:8111–8125. doi: 10.1093/nar/gkz646
  • Duffy EE, Finander B, Choi G, et al. Developmental dynamics of RNA translation in the human brain. Nat Neurosci. 2022;25(10):1353–1365.
  • Wacholder A, Carvunis A-R. Rare detection of noncanonical proteins in yeast mass spectrometry studies. Biorxiv. 2023. doi: 10.1101/2023.03.09.531963
  • Prensner JR, Abelin JG, Kok LW, et al. What can Ribo-seq and proteomics tell us about the non-canonical proteome? Biorxiv. 2023. doi: 10.1101/2023.05.16.541049
  • Prensner JR, Enache OM, Luria V, et al. Noncanonical open reading frames encode functional proteins essential for cancer cell survival. Nat Biotechnol. 2021;39(6):697–704.