319
Views
1
CrossRef citations to date
0
Altmetric
Point of View

Gas-sensing riboceptors

ORCID Icon
Pages 1-6 | Accepted 08 Jul 2024, Published online: 17 Jul 2024

References

  • Gesteland RF, Cech T, Atkins JF. The RNA world: the nature of modern RNA suggests a prebiotic RNA world. United States of America: CSHL Press; 2006.
  • Higgs PG, Lehman N. The RNA world: molecular cooperation at the origins of life. Nat Rev Genet. 2015;16(1):7–17. doi: 10.1038/nrg3841
  • Saito H. The RNA world ‘hypothesis’. Nat Rev Mol Cell Biol. 2022;23(9):582. doi: 10.1038/s41580-022-00514-6
  • Lazcano A, Miller SL. The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell. 1996;85(6):793–798. doi: 10.1016/S0092-8674(00)81263-5
  • Pearce BKD, Pudritz RE, Semenov DA, et al. Origin of the RNA world: the fate of nucleobases in warm little ponds. Proc Natl Acad Sci USA. 2017;114(43):11327–11332. doi: 10.1073/pnas.1710339114
  • Morasch M, Liu J, Dirscherl CF, et al. Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules. Nat Chem. 2019;11(9):779–788. doi: 10.1038/s41557-019-0299-5
  • Anbalagan S. Heme-based oxygen gasoreceptors. Am J Physiol Endocrinol Metab. 2024;326(2):E178–81. doi: 10.1152/ajpendo.00004.2024
  • Anbalagan S. Oxygen is an essential gasotransmitter directly sensed via protein gasoreceptors. Anim Model Exp Med. 2024;7(2):189–193. doi: 10.1002/ame2.12400
  • White N, Sadeeshkumar H, Sun A, et al. Na+ riboswitches regulate genes for diverse physiological processes in bacteria. Nat Chem Biol. 2022;18(8):878–885. doi: 10.1038/s41589-022-01086-4
  • Klein DJ, Ar F-D. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science. 2006;313(5794):1752–1756. doi: 10.1126/science.1129666
  • Roth A, Nahvi A, Lee M, et al. Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA. 2006;12(4):607–619. doi: 10.1261/rna.2266506
  • Soukup J. The glmS ribozyme and its multifunctional coenzyme glucosamine-6-phosphate [internet]. In: Ribozymes. John Wiley & Sons, Ltd; 2021 [cited 2024 Jun 14]. p. 91–115. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527814527.ch4
  • Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci. 2023;48(2):119–141. doi: 10.1016/j.tibs.2022.08.009
  • Chen Z, Chen C, Xiao L, et al. HILPS, a long noncoding RNA essential for global oxygen sensing in humans. Sci Adv. 2023;9: eadi1867. 47). doi: 10.1126/sciadv.adi1867
  • Anbalagan S. Temperature-sensing riboceptors. RNA Biol. 2024. doi: 10.1080/15476286.2024.2379118
  • Anbalagan S. “Blind men and an elephant”: the need for animals in research, drug safety studies, and understanding civilizational diseases. Anim Model Exp Med. 2023;6(6):627–633. doi: 10.1002/ame2.12364
  • Backstein K. The blind men and the elephant. United States of America: Scholastic Incorporated; 1992.
  • Ignarro LJ, Freeman B. Nitric oxide: biology and pathobiology. United States of America: Academic Press; 2017.
  • Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988;242(4884):1412–1415. doi: 10.1126/science.2849206
  • Hochachka PW, Buck LT, Doll CJ, et al. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA. 1996;93(18):9493–9498. doi: 10.1073/pnas.93.18.9493
  • Hardison R. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exp Biol. 1998;201(8):1099–1117. doi: 10.1242/jeb.201.8.1099
  • Burmester T. Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B. 2002;172(2):95–107. doi: 10.1007/s00360-001-0247-7
  • Vinogradov SN, Hoogewijs D, Bailly X, et al. A phylogenomic profile of globins. BMC Evol Biol. 2006;6(1):31. doi: 10.1186/1471-2148-6-31
  • Delgado-Nixon VM, Gonzalez G, Gilles-Gonzalez MA. Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor. Biochemistry. 2000;39(10):2685–2691. doi: 10.1021/bi991911s
  • Monson EK, Weinstein M, Ditta GS, et al. The FixL protein of rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc Natl Acad Sci USA. 1992;89(10):4280–4284. doi: 10.1073/pnas.89.10.4280
  • Lanzilotta WN, Schuller DJ, Thorsteinsson MV, et al. Structure of the CO sensing transcription activator CooA. Nat Struct Mol Biol. 2000;7(10):876–880. doi: 10.1038/82820
  • Reinking J, Lam MMS, Pardee K, et al. The drosophila nuclear receptor E75 contains heme and is gas responsive. Cell. 2005;122(2):195–207. doi: 10.1016/j.cell.2005.07.005
  • Sen Santara S, Roy J, Mukherjee S, et al. Globin-coupled heme containing oxygen sensor soluble adenylate cyclase in Leishmania prevents cell death during hypoxia. Proc Natl Acad Sci USA. 2013;110(42):16790–16795. doi: 10.1073/pnas.1304145110
  • Gray JM, Karow DS, Lu H, et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature. 2004;430(6997):317–322. doi: 10.1038/nature02714
  • Liu R, Kang Y, Chen L. Activation mechanism of human soluble guanylate cyclase by stimulators and activators. Nat Commun. 2021;12(1):5492. doi: 10.1038/s41467-021-25617-0
  • Freeman SL, Kwon H, Portolano N, et al. Heme binding to human CLOCK affects interactions with the E-box. Proc Natl Acad Sci USA. 2019;116:19911–19916. doi: 10.1073/pnas.1905216116
  • Sarkar A, Carter EL, Harland JB, et al. Ferric heme as a CO/NO sensor in the nuclear receptor Rev-erbß by coupling gas binding to electron transfer. Proc Natl Acad Sci USA. 2021;118(3):e2016717118. doi: 10.1073/pnas.2016717118
  • Dioum EM, Rutter J, Tuckerman JR, et al. NPAS2: a gas-responsive transcription factor. Science. 2002;298(5602):2385–2387. doi: 10.1126/science.1078456
  • Uchida T, Sato E, Sato A, et al. CO-dependent activity-controlling mechanism of heme-containing CO-sensor protein, neuronal PAS domain protein 2. J Biol Chem. 2005;280(22):21358–21368. doi: 10.1074/jbc.M412350200
  • Bishop T, Ratcliffe PJ. Genetic basis of oxygen sensing in the carotid body: HIF2α and an isoform switch in cytochrome c oxidase subunit 4. Sci Signal. 2020;13: eaba1302. 615). doi: 10.1126/scisignal.aba1302
  • Ernst L, Steinfeld B, Barayeu U, et al. Methane formation driven by reactive oxygen species across all living organisms. Nature. 2022;603(7901):482–487. doi: 10.1038/s41586-022-04511-9
  • Carlew TS, Allen CJ, Binder BM. Ethylene receptors in nonplant species. Small Methods. 2020;4(8):1900266. doi: 10.1002/smtd.201900266
  • Lieberman M, Hochstein P. Ethylene formation in rat liver microsomes. Science. 1966;152(3719):213–214. doi: 10.1126/science.152.3719.213
  • Hird FJ, Marginson MA. Formation of ammonia from glutamate by mitochondria. Nature. 1964;201(4925):1224–1225. doi: 10.1038/2011224a0
  • Dance I. Calculating the chemical mechanism of nitrogenase: new working hypotheses. Dalton Trans. 2022;51(33):12717–12728. doi: 10.1039/D2DT01920E
  • Flores JF, Fisher CR, Carney SL, et al. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proc Natl Acad Sci USA. 2005;102:2713–2718. doi:10.1073/pnas.0407455102
  • Richey B, Decker H, Gill SJ. Binding of oxygen and carbon monoxide to arthropod hemocyanin: an allosteric analysis. Biochemistry. 1985;24(1):109–117. doi: 10.1021/bi00322a016
  • Kaliszuk SJ, Morgan NI, Ayers TN, et al. Regulation of nitrite reductase and lipid binding properties of cytoglobin by surface and distal histidine mutations. Nitric Oxide. 2022;125–126:12–22. doi: 10.1016/j.niox.2022.06.001
  • DeMartino AW, Amdahl MB, Bocian K, et al. Redox sensor properties of human cytoglobin allosterically regulate heme pocket reactivity. Free Radic Biol Med. 2021;162:423–434. doi: 10.1016/j.freeradbiomed.2020.10.321
  • Figueiredo J, Santos T, Miranda A, et al. Ligands as stabilizers of G-Quadruplexes in non-coding RNAs. Molecules. 2021;26(20):6164. doi: 10.3390/molecules26206164
  • Mou X, Liew SW, Kwok CK. Identification and targeting of G-quadruplex structures in MALAT1 long non-coding RNA. Nucleic Acids Res. 2022;50(1):397–410. doi: 10.1093/nar/gkab1208
  • Sahayasheela VJ, Yu Z, Hidaka T, et al. Mitochondria and G-quadruplex evolution: an intertwined relationship. Trends Genet. 2023;39(1):15–30. doi: 10.1016/j.tig.2022.10.006
  • Hirashima K, Seimiya H. Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo. Nucleic Acids Res. 2015;43(4):2022–2032. doi: 10.1093/nar/gkv063
  • Varshney D, Cuesta SM, Herdy B, et al. RNA G-quadruplex structures control ribosomal protein production. Sci Rep. 2021;11(1):22735. doi: 10.1038/s41598-021-01847-6
  • Yang SY, Lejault P, Chevrier S, et al. Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat Commun. 2018;9(1):4730. doi: 10.1038/s41467-018-07224-8
  • Poon L-H, Methot SP, Morabi-Pazooki W, et al. Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J Am Chem Soc. 2011;133(6):1877–1884. doi: 10.1021/ja108571a
  • Sen D, Poon LCH. RNA and DNA complexes with hemin [Fe(iii) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit Rev Biochem Mol Biol. 2011;46(6):478–492. doi: 10.3109/10409238.2011.618220
  • Grigg JC, Shumayrikh N, Sen D, et al. G-quadruplex structures formed by expanded hexanucleotide repeat RNA and DNA from the neurodegenerative disease-linked C9orf72 gene efficiently sequester and activate heme. PLOS ONE. 2014;9(9):e106449. doi: 10.1371/journal.pone.0106449
  • Lat PK, Liu K, Kumar DN, et al. High specificity and tight spatial restriction of self-biotinylation by DNA and RNA G-Quadruplexes complexed in vitro and in vivo with heme. Nucleic Acids Res. 2020;48(10):5254–5267. doi: 10.1093/nar/gkaa281
  • Reddy K, Zamiri B, Stanley SYR, et al. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J Biol Chem. 2013;288(14):9860–9866. doi: 10.1074/jbc.C113.452532
  • Fratta P, Mizielinska S, Nicoll AJ, et al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep. 2012;2(1):1016. doi: 10.1038/srep01016
  • Geng Y, Cai Q. Role of C9orf72 hexanucleotide repeat expansions in ALS/FTD pathogenesis. Front Mol Neurosci. 2024;17:1322720. doi: 10.3389/fnmol.2024.1322720
  • Kharel P, Becker G, Tsvetkov V, et al. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res. 2020;48(22):12534–12555. doi: 10.1093/nar/gkaa1126
  • Kharel P, Fay M, Manasova EV, et al. Stress promotes RNA G-quadruplex folding in human cells. Nat Commun. 2023;14(1):205. doi: 10.1038/s41467-023-35811-x
  • Shao X, Zhang W, Umar MI, et al. RNA G-Quadruplex structures mediate gene regulation in bacteria. MBio. 2020;11(1):e02926–19. doi: 10.1128/mBio.02926-19
  • Balla J, Vercellotti GM, Jeney V, et al. Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid Redox Signal. 2007;9(12):2119–2138. doi: 10.1089/ars.2007.1787
  • Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50(1):323–354. doi: 10.1146/annurev.pharmtox.010909.105600
  • Mestre-Fos S, Ito C, Moore CM, et al. Human ribosomal G-quadruplexes regulate heme bioavailability. J Biol Chem. 2020;295(44):14855–14865. doi: 10.1074/jbc.RA120.014332
  • Hoog TG, Pawlak MR, Gaut NJ, et al. Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for molecular evolution on mars. Nat Commun. 2024;15(1):3863. doi: 10.1038/s41467-024-48037-2
  • Horst BG, Yokom AL, Rosenberg DJ, et al. Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy. Elife. 2019;8:e50634. doi: 10.7554/eLife.50634
  • Gray LT, Puig Lombardi E, Verga D, et al. G-quadruplexes sequester free heme in living cells. Cell Chem Biol. 2019;26(12):1681–1691.e5. doi: 10.1016/j.chembiol.2019.10.003
  • Villaverde A, Corchero JL, Seras-Franzoso J, et al. Functional protein aggregates: just the tip of the iceberg. Nanomed (Lond). 2015;10(18):2881–2891. doi: 10.2217/nnm.15.125
  • Kumari K, Sharma GS, Gupta A, et al. Functionally active cross-linked protein oligomers formed by homocysteine thiolactone. Sci Rep. 2023;13(1):5620. doi: 10.1038/s41598-023-32694-2
  • Wang F, Liu K, Han L, et al. Function of a p24 heterodimer in Morphogenesis and protein transport in penicillium oxalicum. Sci Rep. 2015;5(1):11875. doi: 10.1038/srep11875
  • Schwenk J, Metz M, Zolles G, et al. Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature. 2010;465(7295):231–235. doi: 10.1038/nature08964
  • Pyle E, Kalli AC, Amillis S, et al. Structural lipids enable the formation of functional oligomers of the eukaryotic purine symporter UapA. Cell Chem Biol. 2018;25(7):840–848.e4. doi: 10.1016/j.chembiol.2018.03.011
  • MacDonald BT, He X. Frizzled and LRP5/6 receptors for wnt/ -catenin signaling. Cold Spring Harb Perspect Biol. 2012;4(12):a007880. doi: 10.1101/cshperspect.a007880
  • Hay DL, Pioszak AA. RAMPs (receptor-activity modifying proteins): new insights and roles. Annu Rev Pharmacol Toxicol. 2016;56(1):469–487. doi: 10.1146/annurev-pharmtox-010715-103120
  • Barbash S, Lorenzen E, Persson T, et al. GPCRs globally coevolved with receptor activity-modifying proteins, RAMPs. Proc Natl Acad Sci USA. 2017;114:12015–12020. doi:10.1073/pnas.1713074114.
  • Roberts GP, Thorsteinsson MV, Kerby RL, et al. CooA: a heme-containing regulatory protein that serves as a specific sensor of both carbon monoxide and redox state. Prog Nucleic Acid Res Mol Biol. 2001;67:35–63.
  • Barr I, Smith AT, Chen Y, et al. Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing. Proc Natl Acad Sci USA. 2012;109:1919–1924. doi: 10.1073/pnas.1114514109
  • Faller M, Matsunaga M, Yin S, et al. Heme is involved in microRNA processing. Nat Struct Mol Biol. 2007;14(1):23–29. doi: 10.1038/nsmb1182
  • Hines JP, Smith AT, Jacob JP, et al. CO and NO bind to Fe(II) DiGeorge critical region 8 heme but do not restore primary microRNA processing activity. J Biol Inorg Chem. 2016;21(8):1021–1035. doi: 10.1007/s00775-016-1398-z
  • Partin AC, Ngo TD, Herrell E, et al. Heme enables proper positioning of drosha and DGCR8 on primary microRNAs. Nat Commun. 2017;8(1):1737. doi: 10.1038/s41467-017-01713-y
  • Weitz SH, Gong M, Barr I, et al. Processing of microRNA primary transcripts requires heme in mammalian cells. Proc Natl Acad Sci USA. 2014;111:1861–1866. doi: 10.1073/pnas.1309915111
  • Connelly PR, Johnson CR, Robert CH, et al. Binding of oxygen and carbon monoxide to the hemocyanin from the spiny lobster. J Mol Biol. 1989;207(4):829–832. doi: 10.1016/0022-2836(89)90248-9
  • Lacey RF, Binder BM. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor. Plant Physiol. 2016;171(4):2798–809. doi: 10.1104/pp.16.00602
  • Lacey RF, Binder BM. How plants sense ethylene gas — The ethylene receptors. J Inorg Biochem. 2014;133:58–62. doi: 10.1016/j.jinorgbio.2014.01.006
  • Tucker NP, Hicks MG, Clarke TA, et al. The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS One. 2008;3(11):e3623. doi: 10.1371/journal.pone.0003623
  • Khoroshilova N, Popescu C, Münck E, et al. Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc Natl Acad Sci USA. 1997;94(12):6087–6092. doi: 10.1073/pnas.94.12.6087
  • Gruner I, Frädrich C, Böttger LH, et al. Aspartate 141 is the fourth ligand of the oxygen-sensing [4Fe-4S]2+ cluster of Bacillus subtilis transcriptional regulator fnr *. J Biol Chem. 2011;286(3):2017–2021. doi: 10.1074/jbc.M110.191940
  • Volbeda A, Dodd EL, Darnault C, et al. Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding. Nat Commun. 2017;8(1):15052. doi: 10.1038/ncomms15052
  • Sagripanti J-L, Goering PL, Lamanna A. Interaction of copper with DNA and antagonism by other metals. Toxicol Appl Pharmacol. 1991;110(3):477–485. doi: 10.1016/0041-008X(91)90048-J
  • Simpson RB. Association constants of methylmercuric and mercuric ions with Nucleosides. J Am Chem Soc. 1964;86(10):2059–2065. doi: 10.1021/ja01064a029
  • Joshi CK, Jamasb AR, ViñViñAs R, et al. gRnade: geometric deep learning for 3D RNA inverse design. bioRxiv. 2024:2024.03.31.587283.
  • Philips A, G Ł, Bujnicki JM. Computational methods for prediction of RNA interactions with metal ions and small organic ligands. Methods Enzymol. 2015;553:261–285.
  • Zhao Y, Wang J, Chang F, et al. Identification of metal ion-binding sites in RNA structures using deep learning method. Brief Bioinform. 2023;24(2):bbad049. doi: 10.1093/bib/bbad049
  • Ponce-Salvatierra A, Wawrzyniak-Turek K, Steuerwald U, et al. Crystal structure of a DNA catalyst. Nature. 2016;529(7585):231–234. doi: 10.1038/nature16471
  • Dong X, Qiu Z, Wang Z, et al. Efficient Silver(I)-containing i-motif DNA hybrid catalyst for enantioselective diels-alder reactions. Angew Chem Int Ed Engl. 2024:e202407838. doi: 10.1002/anie.202407838
  • Cozma I, Em M, Brennan JD, et al. DNAzymes as key components of biosensing systems for the detection of biological targets. Biosens Bioelectron. 2021;177:112972. doi: 10.1016/j.bios.2021.112972
  • Okamoto C, Momotake A, Yamamoto Y. Structural and functional characterization of complexes between heme and dimeric parallel G-quadruplex DNAs. J Inorg Biochem. 2021;216:111336. doi: 10.1016/j.jinorgbio.2020.111336
  • Anbalagan, S. Heme-based aquareceptors. Postepy Biochem. 2024. doi: 10.18388/pb.2021_551