228
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Circular at the very beginning: on the initial genomes in the RNA world

, , & ORCID Icon
Pages 17-31 | Accepted 10 Jul 2024, Published online: 17 Jul 2024

References

  • Gilbert W. Origin of life: the RNA world. Nature. 1986;319(6055):618. doi: 10.1038/319618a0
  • Joyce GF. The antiquity of RNA-based evolution. Nature. 2002;418(6894):214–221. doi: 10.1038/418214a
  • Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biol Direct. 2012;7(1):23. doi: 10.1186/1745-6150-7-23
  • Higgs PG, Lehman N. The RNA world: molecular cooperation at the origins of life. Nat Rev Genet. 2015;16(1):7–17. doi: 10.1038/nrg3841
  • Luisi PL. About various definitions of life. Orig Life Evol Biosph. 1998;28(4/6):613–622. doi: 10.1023/A:1006517315105
  • Benner SA. Defining life. Astrobiology. 2010;10(10):1021–1030. doi: 10.1089/ast.2010.0524
  • Ma WT. The essence of life. Biol Direct. 2016;11(1):49. doi: 10.1186/s13062-016-0150-5
  • Ma WT. What does “the RNA World” mean to “the origin of life”? Life. 2017;7(4):49. doi: 10.3390/life7040049
  • Joyce GF, Orgel LE. Progress toward understanding the origin of the RNA world. In: Gesteland R, Cech T Atkins J, editors. The RNA world. (NY): CSHL Press; 2006. p. 23–56.
  • Kun Á, Szilágyi A, Könnyü B, et al. The dynamics of the RNA world: insights and challenges. Ann N Y Acad Sci. 2015;1341(1):75–95. doi: 10.1111/nyas.12700
  • Pressman A, Blanco C, Chen IA. The RNA world as a model system to study the origin of life. Curr Biol. 2015;25(19):R953–63. doi: 10.1016/j.cub.2015.06.016
  • Ma WT, Liang YZ. Investigating prebiotic protocells for an understanding of the origin of life: a comprehensive perspective combining the chemical, evolutionary and historical aspects. In: Fiore M, editor. Prebiotic chemistry and Life’s origin. Cambridge: Royal society of chemistry; 2022. p. 347–378.
  • Sutherland JD. The origin of life—out of the blue. Angew Chem Int Ed. 2016;55(1):104–121. doi: 10.1002/anie.201506585
  • Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459(7244):239–242. doi: 10.1038/nature08013
  • Powner MW, Sutherland JD, Szostak JW. The origin of nucleotides. Synlett. 2011;14(14):1956–1964. doi: 10.1055/s-0030-1261177
  • Szathmáry E. The origin of replicators and reproducers. Philos Trans R Soc B Biol Sci. 2006;361(1474):1761–1776. doi: 10.1098/rstb.2006.1912
  • Takeuchi N, Hogeweg P. Evolutionary dynamics of RNA-like replicator systems: a bioinformatic approach to the origin of life. Phys Life Rev. 2012;9(3):219–263. doi: 10.1016/j.plrev.2012.06.001
  • Szathmáry E, Maynard-Smith J. From replicators to reproducers: the first major transitions leading to life. J Theor Biol. 1997;187(4):555–571. doi: 10.1006/jtbi.1996.0389
  • Szathmáry E, Maynard-Smith J. The major evolutionary transitions. Nature. 1995;374(6519):227–232. doi: 10.1038/374227a0
  • Szathmáry E. Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci USA. 2015;112(33):10104–10111. doi: 10.1073/pnas.1421398112
  • Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014;20(12):1829–1842. doi: 10.1261/rna.047126.114
  • Duran-Vila N, Elena SF, Daros JA, et al. Structure and evolution of viroids. In: Domingo E, Parish C Holland J, editors. Origin and evolution of viruses. Oxford: Elsevier; 2008. p. 43–64.
  • Winnik MA. End-to-end cyclization of polymer chains. Acc Chem Res. 1985;18(3):73–79. doi: 10.1021/ar00111a002
  • Müller S, Appel B. In vitro circularization of RNA. RNA Biol. 2017;14(8):1018–1027. doi: 10.1080/15476286.2016.1239009
  • Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 2015;43(4):2454–2465. doi: 10.1093/nar/gkv045
  • Ma WT, Yu CW, Zhang WT. Monte Carlo simulation of early molecular evolution in the RNA world. Biosystems. 2007;90(1):28–39. doi: 10.1016/j.biosystems.2006.06.005
  • Ma WT, Yu CW, Zhang WT, et al. Nucleotide synthetase ribozymes may have emerged first in the RNA world. RNA. 2007;13(11):2012–2019. doi: 10.1261/rna.658507
  • Ma WT, Yu CW, Zhang WT, et al. A simple template-dependent ligase ribozyme as the RNA replicase emerging first in the RNA world. Astrobiology. 2010;10(4):437–447. doi: 10.1089/ast.2009.0385
  • Chen Y, Ma WT, Morozov AV. The origin of biological homochirality along with the origin of life. PLOS Comp Biol. 2020;16(1):e1007592. doi: 10.1371/journal.pcbi.1007592
  • Ferris JP, Hill AR, Liu R, et al. Synthesis of long prebiotic oligomers on mineral surfaces. Nature. 1996;381(6577):59–61. doi: 10.1038/381059a0
  • Ferris JP. Montmorillonite catalysis of 30-50 mer oligonucleotides: laboratory demonstration of potential steps in the origin of the RNA world. Orig Life Evol Biosph. 2002;32(4):311–332. doi: 10.1023/A:1020543312109
  • Ertem G. Montmorillonite, oligonucleotides, RNA and origin of life. Orig Life Evol Biosph. 2004;34(6):549–570. doi: 10.1023/B:ORIG.0000043130.49790.a7
  • Franchi M, Gallori E. A surface-mediated origin of the RNA world: biogenic activities of clay-adsorbed RNA molecules. Gene. 2005;346:205–214. doi: 10.1016/j.gene.2004.11.002
  • Joyce GF, Orgel LE. Prospects for understanding the origin of the RNA world. In: Gesteland R, Cech T Atkins J, editors. The RNA world. (NY): CSHL Press; 1999. p. 49–77.
  • Szostak JW, Bartel DP, Luisi PL. Synthesizing life. Nature. 2001;409(6818):387–390. doi: 10.1038/35053176
  • Robertson MP, Joyce GF. The origins of the RNA world. Csh Perspect Biol. 2012;4(5):a003608. doi: 10.1101/cshperspect.a003608
  • Joyce GF, Szostak JW. Protocells and RNA self-replication. Csh Perspect Biol. 2018;10(9):a034801. doi: 10.1101/cshperspect.a034801
  • Bartel DP. Re-creating an RNA replicase. In: Gesteland R, Cech T Atkins J, editors. The RNA world. (NY): CSHL Press; 1999. p. 143–162.
  • Johnston WK, Unrau PJ, Lawrence MS, et al. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science. 2001;292(5520):1319–1325. doi: 10.1126/science.1060786
  • Zaher HS, Unrau PJ. Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA. 2007;13(7):1017–1026. doi: 10.1261/rna.548807
  • Wochner A, Attwater J, Coulson A, et al. Ribozyme-catalyzed transcription of an active ribozyme. Science. 2011;332(6026):209–212. doi: 10.1126/science.1200752
  • Attwater J, Wochner A, Holliger P. In-ice evolution of RNA polymerase ribozyme activity. Nat Chem. 2013;5(12):1011–1018. doi: 10.1038/nchem.1781
  • Horning DP, Joyce GF. Amplification of RNA by an RNA polymerase ribozyme. Proc Natl Acad Sci USA. 2016;113(35):9786–9791. doi: 10.1073/pnas.1610103113
  • Cojocaru R, Unrau PJ. Processive RNA polymerization and promoter recognition in an RNA world. Science. 2021;371(6535):1225–1232. doi: 10.1126/science.abd9191
  • Szabó P, Scheuring I, Czárán T, et al. In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature. 2002;420(6913):340–343. doi: 10.1038/nature01187
  • Unrau PJ, Bartel DP. RNA-catalyzed nucleotide synthesis. Nature. 1998;395(6699):260–263. doi: 10.1038/26193
  • Lau MWL, Cadieux KEC, Unrau PJ. Isolation of fast purine nucleotide synthase ribozymes. J Am Chem Soc. 2004;126(48):15686–15693. doi: 10.1021/ja045387a
  • Lau MWL, Unrau PJ. A promiscuous ribozyme promotes nucleotide synthesis in addition to ribose chemistry. Chem Biol. 2009;16(8):815–825. doi: 10.1016/j.chembiol.2009.07.005
  • Boza G, Szilágyi A, Kun K, et al. Evolution of the division of labor between genes and enzymes in the RNA world. PLOS Comp Biol. 2014;10(12):e1003936. doi: 10.1371/journal.pcbi.1003936
  • Takeuchi N, Hogeweg P, Kaneko K. The origin of a primordial genome through spontaneous symmetry breaking. Nat Commun. 2017;8(1):250. doi: 10.1038/s41467-017-00243-x
  • Takeuchi N, Hogeweg P, Koonin EV, et al. On the origin of DNA genomes: evolution of the division of labor between template and catalyst in model replicator systems. PLOS Comp Biol. 2011;7(3):e1002024. doi: 10.1371/journal.pcbi.1002024
  • Houseley J, Tollervey D. The many pathways of RNA degradation. Cell. 2009;136(4):763–776. doi: 10.1016/j.cell.2009.01.019
  • Hutchins CJ, Rathjen PD, Forster AC, et al. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 1986;14(9):3627–3640. doi: 10.1093/nar/14.9.3627
  • Prody GA, Bakos JT, Buzayan JM, et al. Autolytic processing of dimeric plant virus satellite RNA. Science. 1986;231(4745):1577–1580. doi: 10.1126/science.231.4745.1577
  • Haseloff J, Gerlach WL. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988;334(6183):585–591. doi: 10.1038/334585a0
  • Diener TO. Circular RNAs: relics of precellular evolution? Proc Natl Acad Sci USA. 1989;86(23):9370–9374. doi: 10.1073/pnas.86.23.9370
  • Kristoffersen EL, Burman M, Noy A, et al. Rolling circle RNA synthesis catalyzed by RNA. Elife. 2022;11:e75186. doi: 10.7554/eLife.75186
  • Tupper AS, Higgs PG. Rolling-circle and strand-displacement mechanisms for non-enzymatic RNA replication at the time of the origin of life. J Theor Biol. 2021;527:110822. doi: 10.1016/j.jtbi.2021.110822
  • Rivera-Madrinan F, Di Iorio K, Higgs PG. Rolling circles as a means of encoding genes in the RNA world. Life-Basel. 2022;12(9):1373. doi: 10.3390/life12091373
  • Takeuchi N, Hogeweg P, Stormo GD. Multilevel selection in models of prebiotic evolution II: a direct comparison of compartmentalization and spatial self-organization. PLOS Comp Biol. 2009;5(10):e1000542. doi: 10.1371/journal.pcbi.1000542
  • Kim YE, Higgs PG, Wilke CO. Co-operation between polymerases and nucleotide synthetases in the RNA world. PLOS Comp Biol. 2016;12(11):e1005161. doi: 10.1371/journal.pcbi.1005161
  • Ma WT, Yu CW, Zhang WT. Circularity and self-cleavage as a strategy for the emergence of a chromosome in the RNA-based protocell. Biol Direct. 2013;8(1):21. doi: 10.1186/1745-6150-8-21
  • Maynard-Smith J, Szathmáry E. The origin of chromosomes I. Selection for linkage. J Theor Biol. 1993;164(4):437–446. doi: 10.1006/jtbi.1993.1165
  • Yin SL, Chen Y, Yu CW, et al. From molecular to cellular form: modeling the first major transition during the arising of life. BMC Evol Biol. 2019;19(1):84. doi: 10.1186/s12862-019-1412-5
  • Jauker M, Griesser H, Richert C. Copying of RNA sequences without pre-activation. Angew Chem Int Ed. 2015;54(48):14559–14563. doi: 10.1002/anie.201506592
  • Zhang SJ, Duzdevich D, Ding D, et al. Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying. Proc Natl Acad Sci USA. 2022;119(17):e2116429119. doi: 10.1073/pnas.2116429119
  • Ding D, Zhang SJ, Szostak JW. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides. Nucleic Acids Res. 2023;51(13):6528–6539. doi: 10.1093/nar/gkad439
  • Russell MJ, Hall AJ, Cairns-Smith AG, et al. Submarine hot spring and origin of life. Nature. 1988;336(6195):117. doi: 10.1038/336117a0
  • Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008;6(11):805–814. doi: 10.1038/nrmicro1991
  • Colin-Garcia M, Heredia A, Cordero G, et al. Hydrothermal vents and prebiotic chemistry: a review. Boletin De La Soc Geologica Mex. 2016;68(3):599–620. doi: 10.18268/BSGM2016v68n3a13
  • Damer B, Deamer D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life-Basel. 2015;5(1):872–887. doi: 10.3390/life5010872
  • Damer B, Deamer D. The hot spring hypothesis for an origin of life. Astrobiology. 2020;20(4):429–452. doi: 10.1089/ast.2019.2045
  • Liang YZ, Yu CW, Ma WT, et al. The automatic parameter-exploration with a machine-learning-like approach: powering the evolutionary modeling on the origin of life. PLOS Comp Biol. 2021;17(12):e1009761. doi: 10.1371/journal.pcbi.1009761
  • Zimm BH. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys. 2012;24(2):269–278. doi: 10.1063/1.1742462