850
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Trichloroethylene Alters Central and Peripheral Immune Function in Autoimmune-Prone MRL+/+ Mice Following Continuous Developmental and Early Life Exposure

&
Pages 129-141 | Received 06 Oct 2006, Accepted 08 Dec 2006, Published online: 09 Oct 2008

REFERENCES

  • ASTDR. Public Health Statement for Trichloroethylene. Agency for Toxic Substances and Disease Registry (ASTDR), Atlanta 1997, Available at http:/atsdr.cdc.gov
  • Adkins B., Bu Y., Guevara P. Murine neonatal CD4+ lymph node cells are highly deficient in the development of antigen-specific TH1 function in adoptive adult hosts. J. Immunol. 2002; 169: 4998–5004
  • Adkins B., Du R. Q. Newborn mice develop balanced TH1/TH2 primary effector responses in vivo but are biased to TH2 secondary responses. J. Immunol. 1998; 160: 4217–4224
  • Berki T., Palinkas L., Boldizsar F., Nemeth P. Glucocorticoid (GC) sensitivity and GC receptor expression differ in thymocyte subpopulations. Int. Immunol. 2002; 14: 463–469
  • Blaylock B. L., Holladay S. D., Comment C. E., Heindel J. J., Luster M. I. Exposure to tetrachlorodibenzo-p-dioxin (TCDD) alters fetal thymocyte maturation. Toxicol. Appl. Pharmacol. 1992; 112: 207–213
  • Blossom S. J., Gilbert K. M. Exposure to a metabolite of the environmental toxicant, trichloroethylene, attenuates CD4+ T-lymphocyte activation-induced cell death by metalloproteinase-dependent FasL shedding. Toxicol. Sci. 2006; 92: 103–414
  • Blossom S. J., Pumford N. R., Gilbert K. M. Activation and attenuation of apoptosis of CD4+ T-lymphocytes following in vivo exposure to two common environmental toxicants, trichloroacetaldehyde hydrate and trichloroacetic acid. J. Autoimmun. 2004; 23: 211–220
  • Bowman L. M., Holt P. G. Selective enhancement of systemic TH1 immunity in immunologically immature rats with an orally-administered bacterial extract. Infect. Immun. 2001; 69: 3719–3727
  • Bruckner J. V., Davis B. D., Blancato J. N. Metabolism, toxicity, and carcinogenicity of trichloroethylene. Crit. Rev. Toxicol. 1989; 20: 31–50
  • Bunn T. L., Parsons P. J., Kao E., Dietert R. R. Exposure to lead during critical windows of embryonic development: Differential immunotoxic outcome based on stage of exposure and gender. Toxicol. Sci. 2001; 64: 57–66
  • Byers V. S., Levin A. S., Ozonoff D. M., Baldwin R. W. Association between clinical symptoms and lymphocyte abnormalities in a population with chronic domestic exposure to industrial solvent-contaminated domestic water supply and a high incidence of leukaemia. Cancer Immunol. Immunother. 1988; 27: 77–81
  • Camacho I. A., Nagarkatti M., Nagarkatti P. S. Evidence for induction of apoptosis in T-lymphocytes from murine fetal thymus following perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol. Sci. 2004; 78: 96–106
  • Carlyle J. R., Zuniga-Pflucker J. C. Lineage commitment and differentiation of T- and natural killer lymphocytes in the fetal mouse. Immunol. Rev. 1998; 165: 63–74
  • Delgado M., Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit antigen-induced apoptosis of mature T-lymphocytes by inhibiting Fas ligand expression. J. Immunol. 2000; 164: 1200–1210
  • Dietert R. R., Piepenbrink M. S. Perinatal immunotoxicity: Why adult exposure assessment fails to predict risk. Environ. Health Perspect. 2006; 114: 477–483
  • Ernst D. N., Weigle W. O., Noonan D. J., McQuitty D. N., Hobbs M. V. The age-associated increase in IFN-gamma synthesis by mouse CD8+ T-lymphocytes correlates with shifts in the frequencies of cell subsets defined by membrane CD44, CD45RB, 3G11, and MEL-14 expression. J. Immunol. 1993; 151: 575–587
  • Festing M. F. Design and statistical methods in studies using animal models of development. ILAR J. 2006; 47: 5–14
  • Fisher J. W., Whittaker T. A., Taylor D. H., Clewell H. J., III, Andersen M. E. Physiologically based pharmacokinetic modeling of the lactating rat and nursing pup: A multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicol. Appl. Pharmacol. 1990; 102: 497–513
  • Ghantous H., Danielsson B. R., Dencker L., Gorczak J., Vesterberg O. Trichloroacetic acid accumulates in murine amniotic fluid after tri- and tetrachloroethylene inhalation. Acta Pharmacol. Toxicol. (Copenhagen) 1986; 58: 105–114
  • Gilbert K. M., Griffin J. M., Pumford N. R. Trichloroethylene activates CD4+ T-lymphocytes: Potential role in an autoimmune response. Drug Metab. Rev. 1999; 31: 901–916
  • Godfrey D. I., Kennedy J., Suda T., Zlotnik A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3−CD4−CD8− triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 1993; 150: 4244–4252
  • Griffin J. M., Blossom S. J., Jackson S. K., Gilbert K. M., Pumford N. R. Trichloroethylene accelerates an autoimmune response by TH1 T-lymphocyte activation in MRL+/+ mice. Immunopharmacology 2000a; 46: 123–137
  • Griffin J. M., Gilbert K. M., Lamps L. W., Pumford N. R. CD4(+) T-cell activation and induction of autoimmune hepatitis following trichloroethylene treatment in MRL+/+ mice. Toxicol. Sci. 2000b; 57: 345–352
  • Holladay S. D., Lindstrom P., Blaylock B. L., Comment C. E., Germolec D. R., Heindell J. J., Luster M. I. Perinatal thymocyte antigen expression and postnatal immune development altered by gestational exposure to tetrachlorodibenzo-p-dioxin (TCDD). Teratology 1991; 44: 385–393
  • Holladay S. D., Smialowicz R. J. Development of the murine and human immune system: Differential effects of immunotoxicants depend on time of exposure. Environ. Health Perspect. 2000; 108(3)463–473, (Suppl)
  • Holladay S. D., Smith B. J. Fetal hematopoietic alterations after maternal exposure to benzo[a]pyrene: A cytometric evaluation. J. Toxicol. Environ. Health. 1994; 42: 259–273
  • Holsapple M. P., Burns-Naas L. A., Hastings K. L., Ladics G. S., Lavin A. L., Makris S. L., Yang Y., Luster M. I. A proposed testing framework for developmental immunotoxicology (DIT). Toxicol. Sci. 2005; 83: 18–24
  • Huesmann M., Scott B., Kisielow P., von Boehmer H. Kinetics and efficacy of positive selection in the thymus of normal and T-lymphocyte receptor transgenic mice. Cell 1991; 66: 533–540
  • Iavicoli I., Marinaccio A., Carelli G. Effects of occupational trichloroethylene exposure on cytokine levels in workers. J. Occup. Environ. Med. 2005; 47: 453–457
  • Kilburn K. H., Warshaw R. H. Prevalence of symptoms of systemic lupus erythematosus (SLE) and of fluorescent antinuclear antibodies associated with chronic exposure to trichloroethylene and other chemicals in well water. Environ. Res. 1992; 57: 1–9
  • Kono D. H., Park M. S., Szydlik A., Haraldsson K. M., Kuan J. D., Pearson D. L., Hultman P., Pollard K. M. Resistance to xenobiotic-induced autoimmunity maps to chromosome 1. J. Immunol. 2001; 167: 2396–2403
  • Kretz-Rommel A., Rubin R. L. Disruption of positive selection of thymocytes causes autoimmunity. Nat. Med. 2000; 6: 298–305
  • Laderach D., Koutouzov S., Bach J. F., Yamamoto A. M. Concomitant early appearance of anti-ribonucleoprotein and anti-nucleosome antibodies in lupus prone mice. J. Autoimmun. 2003; 20: 161–170
  • Lewis D. B., Yu C. C., Meyer J., English B. K., Kahn S. J., Wilson C. B. Cellular and molecular mechanisms for reduced interleukin-4 and interferon-gamma production by neonatal T-lymphocytes. J. Clin. Invest 1991; 87: 194–202
  • Lockey J. E., Kelly C. R., Cannon G. W., Colby T. V., Aldrich V., Livingston G. K. Progressive systemic sclerosis associated with exposure to trichloroethylene. J. Occup. Med. 1987; 29: 493–496
  • Luster M. I., Portier C., Pait D. G., Rosenthal G. J., Germolec D. R., Corsini E., Blaylock B. L., Pollock P., Kouchi Y., Craig W., White K. L., Munson A. E., Comment C. E. Risk assessment in immunotoxicology. II. Relationships between immune and host resistance tests. Fundam. Appl. Toxicol. 1993; 21: 71–82
  • Manson J. M., Murphy M., Richdale N., Smith M. K. Effects of oral exposure to trichloroethylene on female reproductive function. Toxicology 1984; 32: 229–242
  • Miller T. E., Golemboski K. A., Ha R. S., Bunn T., Sanders F. S., Dietert R. R. Developmental exposure to lead causes persistent immunotoxicity in Fischer 344 rats. Toxicol. Sci. 1998; 42: 129–135
  • Nakajima T., Wang R. S., Katakura Y., Kishi R., Elovaara E., Park S. S., Gelboin H. V., Vainio H. Sex-, age- and pregnancy-induced changes in the metabolism of toluene and trichloroethylene in rat liver in relation to the regulation of cytochrome P450IIE1 and P450IIC11 content. J. Pharmacol. Exp. Ther. 1992; 261: 869–874
  • Peden-Adams M. M., Eudaly J. G., Heesemann L. M., Smythe J., Miller J., Gilkeson G. S., Keil D. E. Developmental immunotoxicity of trichloroethylene (TCE): Studies in B6C3F1 mice. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2006; 41: 249–271
  • Pollard K. M., Pearson D. L., Hultman P., Deane T. N., Lindh U., Kono D. H. Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone bxsb mice. Environ. Health Perspect. 2001; 109: 27–33
  • Sebzda E., Mariathasan S., Ohteki T., Jones R., Bachmann M. F., Ohashi P. S. Selection of the T-lymphocyte repertoire. Annu. Rev. Immunol. 1999; 17: 829–874
  • Theofilopoulos A. N., Dixon F. J. Murine models of systemic lupus erythematosus. Adv. Immunol. 1985; 37: 269–390
  • Vorderstrasse B. A., Cundiff J. A., Lawrence B. P. A dose-response study of the effects of prenatal and lactational exposure to TCDD on the immune response to influenza a virus. J. Toxicol. Environ. Health A 2006; 69: 445–463
  • Waller P. A., Clauw D., Cupps T., Metcalf J. S., Silver R. M., Leroy E. C. Fasciitis (not scleroderma) following prolonged exposure to an organic solvent (trichloroethylene). J. Rheumatol. 1994; 21: 1567–1570
  • Wilson A., Capone M., MacDonald H. R. Unexpectedly late expression of intracellular CD3ε and TCR γδ proteins during adult thymus development. Int. Immunol. 1999; 11: 164–1650
  • Wu C., Schaum J. Exposure assessment of trichloroethylene. Environ. Health Perspect. 2000; 108(2)359–363, (Suppl)
  • Zheng X., Gao J. X., Chang X., Wang Y., Liu Y., Wen J., Zhang H., Zhang J., Liu Y., Zheng P. B7-CD28 interaction promotes proliferation and survival but suppresses differentiation of CD4−CD8− T-lymphocytes in the thymus. J. Immunol. 2004; 173: 2253–2261
  • Zoller A. L., Kersh G. J. Estrogen induces thymic atrophy by eliminating early thymic progenitors and inhibiting proliferation of beta-selected thymocytes. J. Immunol. 2006; 176: 7371–7378

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.