1,516
Views
52
CrossRef citations to date
0
Altmetric
Select Reports from the Directions and Needs in Asbestos Research Conference, Missoula, Montana

Role of Scavenger Receptor A Family in Lung Inflammation from Exposure to Environmental Particles

, &
Pages 151-157 | Received 27 Oct 2007, Accepted 21 Dec 2007, Published online: 09 Oct 2008

REFERENCES

  • Arredouani M. S., Palecanda A., Koziel H., Huang Y. C., Imrich A., Sulahian T. H., Ning Y. Y., Yang Z., Pikkarainen T., Sankala M., Vargas S. O., Takeya M., Tryggvason K., Kobzik L. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J. Immunol. 2005; 175: 6058–6064
  • Arredouani M. S., Yang Z., Imrich A., Ning Y., Qin G., Kobzik L. The macrophage Scavenger receptor SR-AI/II and lung defense against pneumococci and particles. Am. J. Respir. Cell Mol. Biol. 2006; 35: 474–478
  • Arredouani M., Yang Z., Ning Y., Qin G., Soininen R., Tryggvason K., Kobzik L. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J. Exp. Med. 2004; 200: 267–272
  • Beamer C. A., Holian A. Scavenger receptor class A type I/II (CD204) null mice fail to develop fibrosis following silica exposure. Am. J. Physiol. Lung Cell Mol. Physiol. 2005; 289: 186–195
  • Becklake M. R., Bagatin E., Neder J. A. Asbestos-related diseases of the lungs and pleura: Uses, trends and management over the last century. Int. J. Tuberc. Lung Dis. 2007; 11: 356–369, Review
  • Benson S. C., Belton J. C., Scheve L. G. Regulation of lung fibroblast proliferation and collagen synthesis by alveolar macrophages in experimental silicosis. I: Effect of macrophage-conditioned medium from silica instilled rats. J. Environ. Pathol. Toxicol. Oncol. 1986; 7: 87–97
  • Brannstrom A., Sankala M., Trygvasson K., Pikkarainen T. Arginine residues in Domain V have a central role for bacteria-binding activity of macrophage scavenger receptor MARCO. Biochem. Biophys. Res. Comm. 2002; 290: 1462–1469
  • Brown J. M., Schwanke C. M., Pershouse M. A., Pfau J. C., Holian A. Effects of rottlerin on silica-exacerbated systemic autoimmune disease in New Zealand mixed mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2005; 289: 990–998
  • Brown J. M., Swindle E. J., Kushnir-Sukhov N. M., Holian A., Metcalfe D. D. Silica-directed mast cell activation is enhanced by scavenger receptors. Am. J. Respir. Cell Mol. Biol. 2006; 36: 43–52
  • Brown M. S., Goldstein J. L., Krieger M., Ho Y. K., Anderson R. G. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J. Cell Biol. 1979; 82: 597–613
  • Calvert G. M., Rice F. L., Boiano J. M., Sheehy J. W., Sanderson W. T. Occupational silica exposure and risk of various diseases: An analysis using death certificates from 27 states of the United States. Occup. Environ. Med. 2003; 60: 122–129
  • Chao S. K., Hamilton R. F., Pfau J. C., Holian A. Cell surface regulation of silica-induced apoptosis by the SR-A scavenger receptor in a murine lung macrophage cell line (MH-S). Toxicol. Appl. Pharmacol. 2001; 174: 10–16
  • Chen Y., Sankala M., Ojala J. R., Sun Y., Tuuttila A., Isenman D. E., Tryggvason K., Pikkarainen T. A phage display screen and binding studies with acetylated low density lipoprotein provide evidence for the importance of the scavenger receptor cysteine-rich (SRCR) domain in the ligand-binding function of MARCO. J. Biol. Chem. 2006; 281: 12767–12775
  • Dhaliwal B. S., Steinbrecher U. P. Scavenger receptors and oxidized low density lipoproteins. Clin. Chim. Acta. 1999; 286: 191–205
  • Doi T., Higashino K., Kurihara Y., Wada Y., Miyazaki T., Nakamura H., Uesugi S., Imanishi T., Kawabe Y., Itakura H., Yazakij Y., Matsumoto A., Kodama T. Charged collagen structure mediates the recognition of negatively charged macromolecules by macrophage scavenger receptors. J. Biol. Chem. 1993; 268: 2126–2133
  • Dresel H. A., Friedrich E. A., Otto I., Waldherr R., Schettler G. The low density lipoprotein and low density lipoprotein receptors and their possible importance in the pathogenesis of atherosclerosis. Arzneimittelforschung 1985; 35: 1936–1940
  • Elomaa O., Kangas M., Sahlberg C., Tuukkanen J., Sormunen R., Liakka A., Thesleff I., Kraal G., Tryggvason K. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 1995; 80: 603–609
  • Englert H., Small-McMahon J., Davis K., O'Connor H., Chambers P., Brooks P. Male systemic sclerosis and occupational silica exposure: A population-based study. Aust N Z J Med. 2000; 30: 215–220
  • Green F. H. Y., Vallyathan V. Pathologic responses to inhaled silica: Silica and silica-induced lung diseases. CRC Press, Boca Raton, FL 1996; 39–59
  • Hamilton R. F., de Villiers W. J., Holian A. Class A Type II scavenger receptor mediates silica-induced apoptosis in Chinese hamster ovary cell line. Toxicol. Appl. Pharmacol. 2000; 162: 100–106
  • Hamilton R. F., Jr, Pfau J. C., Marshall G. D., Holian A. Silica and PM1648 modify human alveolar macrophage antigen-presenting cell activity in vitro. J. Environ. Pathol. Toxicol. Oncol. 2001; 20(S1)75–84
  • Hamilton R. F., Jr, Thakur S. A., Mayfair J. K., Holian A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J. Biol. Chem. 2006; 281: 34218–34226
  • Huaux F. New developments in the understanding of immunology in silicosis. Curr. Opin. Allergy Clin. Immunol. 2007; 7: 168–173
  • Iyer R., Holian A. Involvement of the ICE family of proteases in silica-induced apoptosis in human alveolar macrophages. Am. J. Physiol. 1997; 273: L760–767
  • Iyer R., Hamilton R. F., Holian A. Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages. Toxicol. Appl. Pharmacol. 1996; 141: 84–92
  • Jiang Y., Oliver P., Davies K. E., Platt N. Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J. Biol. Chem. 2006; 281: 11834–11845
  • Kunjathoor V. V., Febbraio M., Podrez E. A., Moore K. J., Andersson L., Koehn S., Rhee J. S., Silverstein R., Hoff H. F., Freeman M. W. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 2002; 277: 49982–49988
  • Lalmanach G., Diot E., Godat E., Lecaille F., Herve-Grepinet V. Cysteine cathepsins and caspases in silicosis. Biol. Chem. 2006; 387: 863–870
  • Lardot C. G., Huaux F. A., Broeckaert F. R., Delos P. J. D. M., Fubini B., Lison D. F. Role of urokinase in the fibrogenic response of the lung to mineral particles. Am. J. Respir. Crit. Care Med. 1998; 157: 617–628
  • Leigh J., Davidson P., Hendrie L., Berry D. Malignant mesothelioma in Australia, 1945–2000. Am. J. Ind. Med. 2002; 41: 188–201
  • Lindenschmidt R. C., Driscoll K. E., Perkins M. A., Higgins J. M., Maurer J. K., Belfiore K. A. The comparison of a fibrogenic and two non-fibrogenic dusts by bronchoalveolar lavage. Toxicol. Appl. Pharmacol. 1990; 102: 268–281
  • Matsumoto A., Naito M., Itakura H., Ikemoto S., Asaoka H., Hayakawa I., Kanamori H., Aburatani H., Takaku F., Suzuki H., Kobari Y., Miyai T., Takahashi K., Cohen E. H., Wydro R., Housman D. E., Kodama T. Human macrophage scavenger receptors: Primary structure, expression, and localization in atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 1990; 87: 9133–9137
  • Migliaccio C. T., Hamilton R. F., Jr, Holian A. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure. Toxicol. Appl. Pharmacol. 2005; 205: 168–176
  • Moore K. J., Freeman M. W. Scavenger receptors in atherosclerosis: Beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 1702–1711
  • Murphy J. E., Tedbury P. R., Homer-Vanniasinkam S., Walker J. H., Ponnambalam S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 2005; 182: 1–15
  • O'Reilly K. M., Mclaughlin A. M., Beckett W. S., Sime P. J. Asbestos-related lung disease. Am. Family Physician. 2007; 75: 683–688
  • Palecanda A., Paulauskis J., Al-Mutairi E., Imrich A., Qin G., Suzuki H., Kodama T., Tryggvason K., Koziel H., Kobzik L. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J. Exp. Med. 1999; 189: 1497–1506
  • Park R., Rice F., Stayner L., Smith R., Gilbert S., Checkoway H. Exposure to crystalline silica, silicosis, and lung disease other than cancer in diatomaceous earth industry workers: A quantitative risk assessment. Occup. Environ. Med. 2002; 59: 36–43
  • Parks C. G., Cooper G. S., Nylander-French L. A., Sanderson W. T., Dement J. M., Cohen P. L., Dooley M. A., Treadwell E. L., St Clair E. W., Gilkeson G. S., Hoppin J. A., Savitz D. A. Occupational exposure to crystalline silica and risk of systemic lupus erythematosus: A population-based, case-control study in the southeastern United States. Arthritis Rheum. 2002; 46: 1840–1850
  • Peiser L., Gough P. J., Kodama T., Gordon S. Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: Role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect. Immun. 2000; 68: 1953–1963
  • Pfau J. C., Brown J. M., Holian A. Silica-exposed mice generate autoantibodies to apoptotic cells. Toxicology 2004; 195: 167–176
  • Platt N., Gordon S. Scavenger receptors: Diverse activities and promiscuous binding of polyanionic ligands. Chem. Biol. 1998; 5: 193–203
  • Resnick D., Chatterton J. E., Schwartz K., Slayter H., Krieger M. Structures of class A macrophage scavenger receptors. Electron microscopic study of flexible, multidomain, fibrous proteins and determination of the disulfide bond pattern of the scavenger receptor cysteine-rich domain. J. Biol. Chem. 1996; 271: 26924–26930
  • Resnick D., Freedman N. J., Xu S., Krieger M. Secreted extracellular domains of macrophage scavenger receptors form elongated trimers which specifically bind crocidolite asbestos. J. Biol. Chem. 1993; 268: 3538–3545
  • Rimal B., Greenberg A. K., Rom W. N. Basic pathogenetic mechanisms in silicosis: Current understanding. Curr. Opin. Pulm. Med. 2005; 11: 169–173
  • Sarrias M. R., Gronlund J., Padilla O., Madsen J., Holmskov U., Lozano F. The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit. Rev. Immunol. 2004; 24: 1–37
  • Srivastava K. D., Rom W. N., Jagirdar J., Yie T. A., Gordon T., Tchou-Wong K. M. Crucial role of interleukin-1β and nitric oxide synthase in silica-induced inflammation and apoptosis in mice. Am. J. Respir. Crit. Care Med. 2002; 165: 527–533
  • Thibodeau M., Giardina C., Hubbard A. K. Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolysis. Toxicol. Sci. 2003; 76: 91–101
  • Ulm K., Waschulzik B., Ehnes H., Guldner K., Thomasson B., Schwebig A., Nuss H. Silica dust and lung cancer in the German stone, quarrying, and ceramics industries: results of a case-control study. Thorax 1999; 54: 347–351
  • van der Laan L. J., Dopp E. A., Haworth R., Pikkarainen T., Kangas M., Elomaa O., Dijkstra C. D., Gordon S., Tryggvason K., Kraal G. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J. Immunol. 1999; 162: 939–947

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.