679
Views
14
CrossRef citations to date
0
Altmetric
Review

β-Glycosphingolipids as Immune Modulators

&
Pages 209-220 | Received 07 Nov 2007, Accepted 26 Dec 2007, Published online: 09 Oct 2008

REFERENCES

  • Adar T., Ben-Ami R., Elstein D., Zimran A., Berliner S., Yedgar S., Barshtein G. Aggregation of red blood cells in patients with Gaucher disease. Br. J. Haematol. 2006; 134: 432–437
  • Apostolou I., Takahama Y., Belmant C., Kawano T., Huerre M., Marchal G., Cui J., Taniguchi M., Nakauchi H., Fournie J. J., Kourilsky P., Gachelin G. Murine natural killer T(NKT)-cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl. Acad. Sci. USA 1999; 96: 5141–5146
  • Arase H., Arase N., Nakagawa K., Good R. A., Onoe K. NK1.1+ CD4+CD8− thymocytes with specific lymphokine secretion. Eur. J. Immunol. 1993; 23: 307–310
  • Bendelac A., Lantz O., Quimby M. E., Yewdell J. W., Bennink J. R., Brutkiewicz R. R. CD1 recognition by mouse NK1+ T-lymphocytes. Science 1995; 268: 863–865
  • Bendelac A., Rivera M. N., Park S. H., Roark Mouse J. H. CD1-specific NK1 T-cells: Development, specificity, and function. Annu. Rev. Immunol. 1997; 15: 535–562
  • Bendelac A., Savage P. B., Teyton L. The biology of NKT cells. Annu. Rev. Immunol. 2007; 25: 297–336
  • Berzins S. P., Smyth M. J., Godfrey D. I. Working with NKT cells - pitfalls and practicalities. Curr. Opin. Immunol. 2005; 17: 448–454
  • Bezbradica J. S., Stanic A. K., Matsuki N., Bour-Jordan H., Bluestone J. A., Thomas J. W., Unutmaz D., Van Kaer L., Joyce S. Distinct roles of dendritic cells and B-cells in Vα 14Jα 18 natural T-cell activation in vivo. J. Immunol. 2005; 174: 4696–4705
  • Bittman R. The 2003 ASBMB-Avanti Award in Lipids Address: Applications of novel synthetic lipids to biological problems. Chem. Phys. Lipids 2004; 129: 111–131
  • Brigl M., Brenner M. B. CD1: Antigen presentation and T-cell function. Annu. Rev. Immunol. 2004; 22: 817–890
  • Brockman H. L., Momsen M. M., Brown R. E., He L., Chun J., Byun H. S., Bittman R. The 4,5-double bond of ceramide regulates its dipole potential, elastic properties, and packing behavior. Biophys. J. 2004; 87: 1722–1731
  • Brossay L., Chioda M., Burdin N., Koezuka Y., Casorati G., Dellabona P., Kronenberg M. CD1d-mediated recognition of an α -galactosylceramide by natural killer T-cells is highly conserved through mammalian evolution. J. Exp. Med. 1998; 188: 1521–1528
  • Brossay L., Jullien D., Cardell S., Sydora B. C., Burdin N., Modlin R. L., Kronenberg M. Mouse CD1 is mainly expressed on hemopoietic-derived cells. J. Immunol. 1997; 159: 1216–1224
  • Brutkiewicz R. R. CD1d ligands: The good, the bad, and the ugly. J. Immunol. 2006; 177: 769–775
  • Burdin N., Brossay L., Kronenberg M. Immunization with α -galactosylceramide polarizes CD1-reactive NK T-cells towards TH2 cytokine synthesis. Eur. J. Immunol. 1999; 29: 2014–2025, 1999
  • Carnaud C., Lee D., Donnars O., Park S. H., Beavis A., Koezuka Y., Bendelac A. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 1999; 163: 4647–4650
  • Chackerian A., Alt J., Perera V., Behar S. M. Activation of NKT cells protects mice from tuberculosis. Infect. Immun. 2002; 70: 6302–6309
  • Chang Y. J., Huang J. R., Tsai Y. C., Hung J. T., Wu D., Fujio M., Wong C. H., Yu A. L. Potent immune-modulating and anticancer effects of NKT cell stimulatory glycolipids. Proc. Natl. Acad. Sci. USA 2007; 104: 10299–10304
  • Crispe I. N. Hepatic T-cells and liver tolerance. Nat. Rev. Immunol. 2003; 3: 51–62
  • Crowe N. Y., Smyth M. J., Godfrey D. I. A critical role for natural killer T-cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med. 2002; 196: 119–127
  • Cui J., Watanabe N., Kawano T., Yamashita M., Kamata T., Shimizu C., Kimura M., Shimizu E., Koike J., Koseki H., Tanaka Y., Taniguchi M., Nakayama T. Inhibition of T-helper cell type 2 cell differentiation and immunoglobulin E response by ligand-activated Vα 14 natural killer T-cells. J. Exp. Med. 1999; 190: 783–792
  • De Silva A. D., Park J. J., Matsuki N., Stanic A. K., Brutkiewicz R. R., Medof M. E., Joyce S. Lipid protein interactions: The assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J. Immunol. 2002; 168: 723–733
  • Dellabona P., Padovan E., Casorati G., Brockhaus M., Lanzavecchia A. An invariant V α 24-Jα Q/Vβ 11 T-cell receptor is expressed in all individuals by clonally expanded CD4−CD8− T-cells. J. Exp. Med. 1994; 180: 1171–1176
  • Doherty D. G., Norris S., Madrigal-Estebas L., McEntee G., Traynor O., Hegarty J. E., O'Farrelly C. The human liver contains multiple populations of NK cells, T-cells, and CD3+CD56+ natural T-cells with distinct cytotoxic activities and TH1, TH2, and TH0 cytokine secretion patterns. J. Immunol. 1999; 163: 2314–2321
  • Eberl G., Brawand P., MacDonald H. R. Selective bystander proliferation of memory CD4+ and CD8+ T-cells upon NK T- or T-cell activation. J. Immunol. 2000; 165: 4305–4311
  • Eberl G., MacDonald H. R. Rapid death and regeneration of NKT cells in anti-CD3ε - or IL-12-treated mice: A major role for bone marrow in NKT cell homeostasis. Immunity 1998; 9: 345–353
  • Elstein D, Abrahamov A, Hadas-Halpern I, Zimran A. Gaucher's disease. Lancet 2001; 358: 324–327
  • Gansert J. L., Kiessler V., Engele M., Wittke F., Rollinghoff M., Krensky A. M., Porcelli S. A., Modlin R. L., Stenger S. Human NKT cells express granulysin and exhibit antimycobacterial activity. J. Immunol. 2003; 170: 3154–3161
  • Giabbai B., Sidobre S., Crispin M. D., Sanchez-Ruiz Y., Bachi A., Kronenberg M., Wilson I. A., Degano M. Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: A molecular basis for NKT cell activation. J. Immunol. 2005; 175: 977–984
  • Godfrey D. I., Hammond K. J., Poulton L. D., Smyth M. J., Baxter A. G. NKT cells: Facts, functions and fallacies. Immunol. Today 2000; 21: 573–583
  • Godfrey D. I., Kronenberg M. Going both ways: Immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 2004; 114: 1379–1388
  • Godfrey D. I., MacDonald H. R., Kronenberg M., Smyth M. J., Van Kaer L. NKT cells: What's in a name?. Nat. Rev. Immunol. 2004; 4: 231–237
  • Godfrey D. I., McConville M. J., Pellicci D. G. Chewing the fat on natural killer T-cell development. J. Exp. Med. 2006; 203: 2229–2232
  • Goni F. M., Alonso A. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim. Biophys. Acta 2006; 1758: 1902–1921
  • Gonzalez-Aseguinolaza G., de Oliveira C., Tomaska M., Hong S., Bruna-Romero O., Nakayama T., Taniguchi M., Bendelac A., Van Kaer L., Koezuka Y., Tsuji M. α -galactosylceramide-activated Vα 14 natural killer T-cells mediate protection against murine malaria. Proc. Natl. Acad. Sci. USA 2000; 97: 8461–8466
  • Gonzalez-Aseguinolaza G., Van Kaer L., Bergmann C. C., Wilson J. M., Schmieg J., Kronenberg M., Nakayama T., Taniguchi M., Koezuka Y., Tsuji M. Natural killer T-cell ligand α -galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med. 2002; 195: 617–624
  • Gumperz J. E., Brenner M. B. CD1-specific T-cells in microbial immunity. Curr. Opin. Immunol. 2001; 13: 471–478
  • Hammond K. J., Poulton L. D., Palmisano L. J., Silveira P. A., Godfrey D. I., Baxter A. G. α β -T-cell receptor (TCR)+CD4−CD8− (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med. 1998; 187: 1047–1056, 1998
  • Hansen D. S., Schofield L. Regulation of immunity and pathogenesis in infectious diseases by CD1d-restricted NKT cells. Int. J. Parasitol. 2004; 34: 15–25
  • Hauben E., Roncarolo M. G., Nevo U., Schwartz M. Beneficial autoimmunity in Type 1 diabetes mellitus. Trends Immunol. 2005; 26: 248–253
  • Hayakawa K., Lin B. T., Hardy R. R. Murine thymic CD4+ T-cell subsets: A subset (Thy0) that secretes diverse cytokines and over-expresses the Vβ 8 T-cell receptor gene family. J. Exp. Med. 1992; 176: 269–274
  • Hermans I. F., Silk J. D., Gileadi U., Salio M., Mathew B., Ritter G., Schmidt R., Harris A. L., Old L., Cerundolo V. NKT cells enhance CD4+ and CD8+ T-cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol. 2003; 171: 5140–5147
  • Hong S., Wilson M. T., Serizawa I., Wu L., Singh N., Naidenko O. V., Miura T., Haba T., Scherer D. C., Wei J., Kronenberg M., Koezuka Y., Van Kaer L. The natural killer T-cell ligand α -galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med. 2001; 7: 1052–1056
  • Ilan Y., Ohana M., Pappo O., Margalit M., Lalazar G., Engelhardt D., Rabbani E., Nagler A. Alleviation of acute and chronic graft-versus-host disease in a murine model is associated with glucocerebroside-enhanced natural killer T-lymphocyte plasticity. Transplantation 2007; 83: 458–467
  • Ishihara S., Nieda M., Kitayama J., Osada T., Yabe T., Ishikawa Y., Nagawa H., Muto T., Juji T. CD8(+)NKR-P1A(+) T-cells preferentially accumulate in human liver. Eur. J. Immunol. 1999; 29: 2406–2413
  • Iwamura C., Nakayama T. Role of α -galactosylceramide-activated Vα 14 natural killer T-cells in the regulation of allergic diseases. Allergol. Int. 2007; 56: 1–6
  • Jahng A. W., Maricic I., Pedersen B., Burdin N., Naidenko O., Kronenberg M., Koezuka Y., Kumar V. Activation of natural killer T-cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 2001; 194: 1789–1799
  • Jinquan T., Li W., Yuling H., Lang C. All roads lead to Rome: Pathways of NKT cells promoting asthma. Arch. Immunol. Ther. Exp. (Warsz.) 2006; 54: 335–340
  • Kakimi K., Guidotti L. G., Koezuka Y., Chisari F. V. Natural killer T-cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 2000; 192: 921–930
  • Kawakami K., Kinjo Y., Yara S., Koguchi Y., Uezu K., Nakayama T., Taniguchi M., Saito A. Activation of Vα 14(+) natural killer T-cells by α-galactosylceramide results in development of TH1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun. 2001a; 69: 213–220
  • Kawakami K., Kinjo Y., Yara S., Uezu K., Koguchi Y., Tohyama M., Azuma M., Takeda K., Akira S., Saito A. Enhanced γ -interferon production through activation of Vα 14(+) natural killer T-cells by α -galactosylceramide in IL-18-deficient mice with systemic cryptococcosis. Infect. Immun. 2001b; 69: 6643–6650
  • Kawakami K., Tohyama M., Qifeng X., Saito A. Expression of cytokines and inducible nitric oxide synthase mRNA in the lungs of mice infected with Cryptococcus neoformans: Effects of IL-12. Infect. Immun. 1997; 65: 1307–1312
  • Kawano T., Cui J., Koezuka Y., Toura I., Kaneko Y., Motoki K., Ueno H., Nakagawa R., Sato H., Kondo E., Koseki H., Taniguchi M. CD1d-restricted and TCR-mediated activation of Vα 14 NKT cells by glycosylceramides. Science 1997; 278: 1626–1629
  • Kinjo Y., Kronenberg M. Vα 14i NKT cells are innate lymphocytes that participate in the immune response to diverse microbes. J. Clin. Immunol. 2005; 25: 522–533
  • Kitamura H., Iwakabe K., Yahata T., Nishimura S., Ohta A., Ohmi Y., Sato M., Takeda K., Okumura K., Van Kaer L., Kawano T., Taniguchi M., Nishimura T. The natural killer T (NKT)-cell ligand α -galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 1999; 189: 1121–1128
  • Kronenberg M., Engel I. On the road: Progress in finding the unique pathway of invariant NKT cell differentiation. Curr. Opin. Immunol 2007; 19: 186–193
  • Lalazar G., Preston S., Lador A., Pappo O., Zolotarov L., Ilan Y. Alleviation of ConA immune mediated hepatitis via glycolipids: The role of β vs. α configuration in determining NKT lymphocyte distribution and the TH1/TH2 paradigm. J. Hepatology 2006a; 44: S237
  • Lalazar G., Preston S., Zigmond E., Ben Yaacov A., Ilan Y. Glycolipids as immune modulatory tools. Mini Rev. Med. Chem. 2006b; 6: 1249–1253
  • Laloux V., Beaudoin L., Ronet C., Lehuen A. Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes. J. Immunol. 2002; 168: 3251–3258
  • Liu Y., Bittman R. Synthesis of fluorescent lactosylceramide stereoisomers. Chem. Phys. Lipids 2006; 142: 58–69
  • Lu X., Song L., Metelitsa L. S., Bittman R. Synthesis and evaluation of an α -C-galactosylceramide analogue that induces TH1-biased responses in human natural killer T-cells. Chembiochem 2006; 7: 1750–1756
  • Margalit M., Ghazala S. A., Alper R., Elinav E., Klein A., Doviner V., Sherman Y., Thalenfeld B., Engelhardt D., Rabbani E., Ilan Y. Glucocerebroside treatment ameliorates ConA hepatitis by inhibition of NKT lymphocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2005; 289: G917–925
  • Matsuda J. L., Naidenko O. V., Gapin L., Nakayama T., Taniguchi M., Wang C. R., Koezuka Y., Kronenberg M. Tracking the response of natural killer T-cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 2000; 192: 741–754
  • Mattner J., Debord K. L., Ismail N., Goff R. D., Cantu C., 3rd, Zhou D., Saint-Mezard P., Wang V., Gao Y., Yin N., Hoebe K., Schneewind O., Walker D., Beutler B., Teyton L., Savage P. B., Bendelac A. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005; 434: 525–529
  • Menachem Y., Trop S., Kolker O., Shibolet O., Alper R., Nagler A., Ilan Y. Adoptive transfer of NK 1.1+ lymphocytes in immune-mediated colitis: A pro-inflammatory or a tolerizing subgroup of cells?. Microbes Infect. 2005; 7: 825–835
  • Meyer E. H., DeKruyff R. H., Umetsu D. T. iNKT cells in allergic disease. Curr. Top. Microbiol. Immunol. 2007; 314: 269–291
  • Miyake S., Yamamura T. NKT cells and autoimmune diseases: Unraveling the complexity. Curr. Top. Microbiol. Immunol. 2007; 314: 251–267
  • Miyake S., Yamamura T. Therapeutic potential of glycolipid ligands for natural killer (NK) T-cells in the suppression of autoimmune diseases. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2005; 5: 315–322
  • Miyamoto K., Miyake S., Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T-cells. Nature 2001; 413: 531–534
  • Morel P. A., Feili-Hariri M., Coates P. T., Thomson A. W. Dendritic cells, T-cell tolerance and therapy of adverse immune reactions. Clin. Exp. Immunol. 2003; 133: 1–10
  • Motsinger A., Azimzadeh A., Stanic A. K., Johnson R. P., Van Kaer L., Joyce S., Unutmaz D. Identification and simian immunodeficiency virus infection of CD1d-restricted macaque natural killer T-cells. J. Virol. 2003; 77: 8153–8158
  • Nishimura T., Kitamura H., Iwakabe K., Yahata T., Ohta A., Sato M., Takeda K., Okumura K., Van Kaer L., Kawano T., Taniguchi M., Nakui M., Sekimoto M., Koda T. The interface between innate and acquired immunity: Glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T-lymphocytes. Int. Immunol. 2000; 12: 987–994
  • Novak J., Griseri T., Beaudoin L., Lehuen A. Regulation of type 1 diabetes by NKT cells. Int. Rev. Immunol. 2007; 26: 49–72
  • Ohteki T., MacDonald H. R. Major histocompatibility complex class I related molecules control the development of CD4+CD8− and CD4−CD8− subsets of natural killer 1.1+ T-cell receptor-α/β+ cells in the liver of mice. J. Exp. Med. 1994; 180: 699–704
  • Ortaldo J. R., Young H. A., Winkler-Pickett R. T., Bere E. W., Jr, Murphy W. J., Wiltrout R. H. Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J. Immunol. 2004; 172: 943–953
  • Osman Y., Kawamura T., Naito T., Takeda K., Van Kaer L., Okumura K., Abo T. Activation of hepatic NKT cells and subsequent liver injury following administration of α -galactosylceramide. Eur. J. Immunol. 2000; 30: 1919–1928
  • Parekh V. V., Singh A. K., Wilson M. T., Olivares-Villagomez D., Bezbradica J. S., Inazawa H., Ehara H., Sakai T., Serizawa I., Wu L., Wang C. R., Joyce S., Van Kaer L. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α - and β -anomeric glycolipids. J. Immunol. 2004; 173: 3693–3706
  • Park Y. K., Lee J. W., Ko Y. G., Hong S., Park S. H. Lipid rafts are required for efficient signal transduction by CD1d. Biochem. Biophys. Res. Commun. 2005; 327: 1143–1154
  • Porcelli S., Yockey C. E., Brenner M. B., Balk S. P. Analysis of T-cell antigen receptor (TCR) expression by human peripheral blood CD4−CD8−α /β T-cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J. Exp. Med., 178: 1–16
  • Porubsky S., Speak A. O., Luckow B., Cerundolo V., Platt F. M., Grone H. J. Normal development and function of invariant natural killer T-cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc. Natl. Acad. Sci. USA 2007; 104: 5977–5982
  • Prohaska S. S., Scherer D. C., Weissman I. L., Kondo M. Developmental plasticity of lymphoid progenitors. Sem. Immunol. 2002; 14: 377–384
  • Roark J. H., Park S. H., Jayawardena J., Kavita U., Shannon M., Bendelac A. CD1.1 expression by mouse antigen-presenting cells and marginal zone B-cells. J. Immunol. 1998; 160: 3121–3127
  • Rothenberg E. V., Dionne C. J. Lineage plasticity and commitment in T-cell development. Immunol. Rev. 2002; 187: 96–115
  • Rothenberg E. V. Negotiation of the T-lineage fate decision by transcription-factor interplay and microenvironmental signals. Immunity 2007; 26: 690–702
  • Safadi R., Zigmond E., Pappo O., Shalev Z., Ilan Y. Amelioration of hepatic fibrosis via β -glucosylceramide-mediated immune modulation is associated with altered CD8 and NKT lymphocyte distribution. Int. Immunol. 2007; 19: 1021–1029
  • Schmieg J., Yang G., Franck R. W., Van Rooijen N., Tsuji M. Glycolipid presentation to natural killer T-cells differs in an organ-dependent fashion. Proc. Natl. Acad. Sci. USA 2005; 102: 1127–1132
  • Sehgal P. B. Plasma membrane rafts and chaperones in cytokine/STAT signaling. Acta Biochim. Pol. 2003; 50: 583–594
  • Shibolet O., Alper R., Zlotogarov L., Thalenfeld B., Engelhardt D., Rabbani E., Ilan Y. Suppression of hepatocellular carcinoma growth via oral immune regulation towards tumor-associated antigens is associated with increased NKT and CD8+ lymphocytes. Oncology 2004a; 66: 323–330
  • Shibolet O., Kalish Y., Klein A., Alper R., Zolotarov L., Thalenfeld B., Engelhardt D., Rabbani E., Ilan Y. Adoptive transfer of ex vivo immune-programmed NKT lymphocytes alleviates immune-mediated colitis. J. Leukocyte Biol. 2004b; 75: 76–86
  • Singh N., Hong S., Scherer D. C., Serizawa I., Burdin N., Kronenberg M., Koezuka Y., Van Kaer L. Cutting edge: Activation of NK T-cells by CD1d and α -galactosylceramide directs conventional T-cells to the acquisition of a TH2 phenotype. J. Immunol. 1999; 163: 2373–2377
  • Singh R. D., Puri V., Valiyaveettil J. T., Marks D. L., Bittman R., Pagano R. E. Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell 2003; 14: 3254–3265
  • Skold M., Behar S. M. Role of CD1d-restricted NKT cells in microbial immunity. Infect. Immun. 2003; 71: 5447–5455
  • Smyth M. J., Thia K. Y., Street S. E., Cretney E., Trapani J. A., Taniguchi M., Kawano T., Pelikan S. B., Crowe N. Y., Godfrey D. I. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 2000; 191: 661–668
  • Sonnino S., Mauri L., Chigorno V., Prinetti A. Gangliosides as components of lipid membrane domains. Glycobiology 2007; 17: 1R–13R
  • Sriram V., Cho S., Li P., O'Donnell P. W., Dunn C., Hayakawa K., Blum J. S., Brutkiewicz R. R. Inhibition of glycolipid shedding rescues recognition of a CD1+ T-cell lymphoma by natural killer T (NKT)-cells. Proc. Natl. Acad. Sci. USA 2002; 99: 8197–8202, 2002
  • Stanic A. K., De Silva A. D., Park J. J., Sriram V., Ichikawa S., Hirabyashi Y., Hayakawa K., Van Kaer L., Brutkiewicz R. R., Joyce S. Defective presentation of the CD1d1-restricted natural Vα 14Jα 18 NKT lymphocyte antigen caused by β -D-glucosylceramide synthase deficiency. Proc. Natl. Acad. Sci. USA 2003a; 100: 1849–1854
  • Stanic A. K., Park J. J., Joyce S. Innate self-recognition by an invariant, rearranged T-cell receptor and its immune consequences. Immunology 2003b; 109: 171–184
  • Stenger S., Hanson D. A., Teitelbaum R., Dewan P., Niazi K. R., Froelich C. J., Ganz T., Thoma-Uszynski S., Melian A., Bogdan C., Porcelli S. A., Bloom B. R., Krensky A. M., Modlin R. L. An antimicrobial activity of cytolytic T-cells mediated by granulysin. Science 1998; 282: 121–125
  • Stockinger B., Bourgeois C., Kassiotis G. CD4+ memory T-cells: Functional differentiation and homeostasis. Immunol. Rev. 2006; 211: 39–48
  • Taniguchi M., Harada M., Kojo S., Nakayama T., Wakao H. The regulatory role of Vα 14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 2003; 21: 483–513
  • Taniguchi M., Nakayama T. Recognition and function of Vα 14 NKT cells. Sem. Immunol. 2000; 12: 543–550
  • Terabe M., Berzofsky J. A. Immunoregulatory T-cells in tumor immunity. Curr. Opin. Immunol. 2004; 16: 157–162
  • Trop S., Nagler A., Ilan Y. Role of NK1.1+ and AsGm-1+ cells in oral immunoregulation of experimental colitis. Inflamm. Bowel Dis. 2003; 9: 75–86
  • Trop S., Samsonov D., Gotsman I., Alper R., Diment J., Ilan Y. Liver-associated lymphocytes expressing NK1.1 are essential for oral immune tolerance induction in a murine model. Hepatology 1999; 29: 746–755
  • Tsuji M. Glycolipids and phospholipids as natural CD1d-binding NKT cell ligands. Cell. Mol. Life Sci. 2006; 63: 1889–1898
  • Tupin E., Kinjo Y., Kronenberg M. The unique role of natural killer T-cells in the response to microorganisms. Nat. Rev. Microbiol. 2007; 5: 405–417
  • Ulrichs T., Porcelli S. A. CD1 proteins: Targets of T-cell recognition in innate and adaptive immunity. Rev. Immunogenet. 2000; 2: 416–432
  • Van Kaer L. Natural killer T-cells as targets for immunotherapy of autoimmune diseases. Immunol. Cell Biol. 2004a; 82: 315–322
  • Van Kaer L. Regulation of immune responses by CD1d-restricted natural killer T-cells. Immunol. Res. 2004b; 30: 139–153
  • Van Kaer L. α -Galactosylceramide therapy for autoimmune diseases: Prospects and obstacles. Nat. Rev. Immunol. 2005; 5: 31–42
  • Van Kaer L. NKT cells: T-lymphocytes with innate effector functions. Curr. Opin. Immunol. 2007; 19: 354–364
  • Weaver C. T., Harrington L. E., Mangan P. R., Gavrieli M., Murphy K. M. TH17: An effector CD4 T-cell lineage with regulatory T-cell ties. Immunity 2006; 24: 677–688
  • Wilson M. T., Singh A. K., Van Kaer L. Immunotherapy with ligands of natural killer T-cells. Trends Mol. Med. 2002; 8: 225–231
  • Wilson M. T., Van Kaer L. Natural killer T-cells as targets for therapeutic intervention in autoimmune diseases. Curr. Pharm. Des. 2003; 9: 201–220
  • Yamamura T., Miyamoto K., Illes Z., Pal E., Araki M., Miyake S. NKT cell-stimulating synthetic glycolipids as potential therapeutics for autoimmune disease. Curr. Top. Med. Chem. 2004; 4: 561–567
  • Yu K. O., Im J. S., Molano A., Dutronc Y., Illarionov P. A., Forestier C., Fujiwara N., Arias I., Miyake S., Yamamura T., Chang Y. T., Besra G. S., Porcelli S. A. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α -galactosylceramides. Proc. Natl. Acad. Sci. USA 2005; 102: 3383–3388
  • Zajonc D. M., Cantu C., 3rd, Mattner J., Zhou D., Savage P. B., Bendelac A., Wilson I. A., Teyton L. Structure and function of a potent agonist for the semi-invariant natural killer T-cell receptor. Nat. Immunol. 2005; 6: 810–818
  • Zhou D. The immunological function of iGb3. Curr. Protein Pept. Sci. 2006; 7: 325–333
  • Zhou D., Mattner J., Cantu C., 3rd, Schrantz N., Yin N., Gao Y., Sagiv Y., Hudspeth K., Wu Y. P., Yamashita T., Teneberg S., Wang D., Proia R. L., Levery S. B., Savage P. B., Teyton L., Bendelac A. Lysosomal glycosphingolipid recognition by NKT cells. Science 2004; 306: 1786–1789
  • Zigmond E., Preston S., Pappo O., Lalazar G., Margalit M., Shalev Z., Zolotarov L., Friedman D., Alper R., Ilan Y. β -Glucosylceramide: A novel method for enhancement of natural killer T-lymphocyte plasticity in murine models of immune-mediated disorders. Gut 2007; 56: 82–89, 2007
  • Zlotnik A., Godfrey D. I., Fischer M., Suda T. Cytokine production by mature and immature CD4−CD8− T-cells. α β -T-cell receptor+ CD4−CD8− T-cells produce IL-4. J. Immunol. 1992; 149: 1211–1215

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.