1,404
Views
19
CrossRef citations to date
0
Altmetric
Research Article

The Opioid Antagonist Naltrexone Improves Murine Inflammatory Bowel Disease

, , , , , & show all
Pages 179-187 | Received 12 Dec 2007, Accepted 21 Feb 2008, Published online: 09 Oct 2008

REFERENCES

  • Bell S., Kamm M. A. Antibodies to tumor necrosis factor-alpha as treatment for Crohn's disease. Lancet 2000; 355: 858–860
  • Cabot P. J. Immune-derived opioids and peripheral antinociception. Clin. Exp. Pharmacol. Physiol. 2001; 28: 230–232
  • Chen Y. L., Law P. Y., Loh H. H. Nuclear factor-κ B signaling in opioid functions and receptor gene function. J. Neuroimmun. Pharmacol 2006; 1: 270–279
  • Cominelli F. Cytokine-based therapies for Crohn's disease—new paradigms. New Engl. J. Med. 2004; 351: 2045–2048
  • Efanov A. M., Koshkin A. A., Sazanov L. A., Borodulina O. I., Varfolomeev S. D., Zaitsev S. V. Inhibition of the respiratory burst in mouse macrophages by ultra-low doses of an opioid peptide is consistent with a possible adaptation mechanism. FEBS Lett. 1994; 355: 114–116
  • Greeneltch K. M., Haudenschild C. C., Keegan A. D., Shi Y. The opioid antagonist naltrexone blocks acute endotoxic shock by inhibiting tumor necrosis factor-α production. Brain Behav. Immun. 2004; 18: 476–484
  • Hanauer S. B. Risks and benefits of combining immunosuppressives and biological agents in inflammatory bowel disease: Is the synergy worth the risk?. Gut 2007; 56: 1181–1183
  • Hanauer S. B., Present D. H. The state of the art in the management of inflammatory bowel disease. Rev. Gastroenterol. Disord. 2003; 3: 81–92
  • Hook S., Camberis M., Prout M., Le Gros G. Absence of pre-proenkephalin increases the threshold for T-cell activation. J. Neuroimmunol. 2003; 140: 61–68
  • House R. V., Thomas P. T., Bhargava H. N. A comparative study of immunomodu-lation produced by in vitro exposure to δ opioid receptor agonist peptides. Peptides 1996; 17: 75–81
  • Hucklebridge F. H., Hudspith B. N., Lydyard P. M., Brostoff J. Stimulation of human peripheral lymphocytes by methionine enkephalin and δ -selective opioid analogues. Immunopharmacology 1990; 19: 87–91
  • Jimenez N., Puig M. M., Pol O. Anti-exudative effects of opioids and expression of κ - and δ -opioid receptors during intestinal inflammation in mice: Involvement of nitric oxide. J. Pharmacol. Exp. Ther. 2006; 316: 261–270
  • Kamm M. A. Review article: Biological drugs in Crohn's disease. Aliment. Pharmacol. Ther. 2006; 24(S3)80–89
  • Kamphuis S., Eriksson F., Kavelaars A., Zijlstra J., van de Pol M., Kuis W., Heijnen C. J. Role of endogenous pro-enkephalin A-derived peptides in human T-cell proliferation and monocyte IL-6 production. J. Neuroimmunol. 1998; 84: 53–60
  • Kandiel A., Fraser A. G., Korelitz B. I., Brensinger C., Lewis J. D. Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut 2005; 54: 1121–1125
  • Keane J., Gershon S., Wise R. P., Mirabile-Levens E., Kasznica J., Schwieterman W. D., Siegel J. N., Braun M. M. Tuberculosis associated with infliximab, a tumor necrosis factor-α -neutralizing agent. New Engl. J. Med. 2001; 345: 1098–1104
  • Li G., Cui G., Tzeng N. S., Wei S. J., Wang T., Block M. L., Hong J. S. Femto-molar concentrations of dextromethorphan protect mesencephalic dopaminergic neurons from inflammatory damage. FASEB J. 2005; 19: 489–496
  • Liu Y., Qin L., Li G., Zhang W., An L., Liu B., Hong J. S. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J. Pharmacol. Exp. Ther. 2003; 305: 212–218
  • McCarthy L., Wetzel M., Sliker J. K., Eisenstein T. K., Rogers T. J. Opioids, opioid receptors, and the immune response. Drug Alcohol Depend. 2001; 62: 111–123
  • Mudter J., Weigmann B., Bartsch B., Kiesslich R., Strand D., Galle P. R., Lehr H. A., Schmidt J., Neurath M. F. Activation pattern of signal transducers and activators of transcription (STAT) factors in inflammatory bowel diseases. Am. J. Gastroenterol. 2005; 100: 64–72
  • Murthy S. N., Cooper H. S., Shim H., Shah R. S., Ibrahim S. A., Sedergran D. J. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig. Dis. Sci. 1993; 38: 1722–1734
  • Navarro F., Hanauer S. B. Treatment of inflammatory bowel disease: Safety and tolerability issues. Am. J. Gastroenterol. 2003; 98: S18–S23
  • Okayasu I., Hatakeyama S., Yamada M., Ohkusa T., Inagaki Y., Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990; 98: 694–702
  • Petrakis I., Ralevski E., Nich C., Levinson C., Carroll K., Poling J., Rounsaville B. Naltrexone and disulfiram in patients with alcohol dependence and current depression. J. Clin. Psychopharmacol. 2007; 27: 160–165
  • Philippe D., Chakass D., Thuru X., Zerbib P., Tsicopoulos A., Geboes K., Bulois P., Breisse M., Vorng H., Gay J., Colombel J. F., Desreumaux P., Chamaillard M. μ -Opioid receptor expression is increased in inflammatory bowel diseases: Implications for homeostatic intestinal inflammation. Gut 2006; 55: 815–823
  • Philippe D., Dubuquoy L., Groux H., Brun V., Chuoi-Mariot M. T., Gaveriaux-Ruff C., Colombel J. F., Kieffer B. L., Desreumaux P. Anti-inflammatory properties of the μ opioid receptor support its use in the treatment of colon inflammation. J. Clin. Invest. 2003; 111: 1329–1338
  • Pizarro T. T., Cominelli F. Cytokine therapy for Crohn's disease: Advances in translational research. Annu. Rev. Med. 2007; 58: 433–444
  • Pizarro T. T., Arseneau K. O., Bamias G., Cominelli F. Mouse models for the study of Crohn's disease. Trends Mol. Med. 2003; 9: 218–222
  • Sandborn W. J., Hanauer S. B. Antitumor necrosis factor therapy for inflammatory bowel disease: A review of agents, pharmacology, clinical results, and safety. Inflamm. Bowel Dis. 1999; 5: 119–133
  • Sandborn W. J., Targan S. R. Biologic therapy of inflammatory bowel disease. Gastroenterology 2002; 122: 1592–1608
  • Sands B. E. Inflammatory bowel disease: Past, present, and future. J. Gastroenterol. 2007; 42: 16–25
  • Smith J. P., Stock H., Bingaman S., Mauger D., Rogosnitzky M., Zagon I. S. Low-dose naltrexone therapy improves active Crohn's disease. Am. J. Gastroenterol. 2007; 102: 820–828
  • Strober W, Fuss I. J., Blumberg R. S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 2002; 20: 495–549
  • Targan S. R., Hanauer S. B., van Deventer S. J., Mayer L., Present D. H., Braakman T., DeWoody K. L., Schaible T. F., Rutgeerts P. J. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor-α for Crohn's disease. Crohn's Disease cA2 Study Group. New Engl. J. Med. 1997; 337: 1029–1035
  • Tomassini N., Renaud F. L., Roy S., Loh H. H. Mu and delta receptors mediate morphine effects on phagocytosis by murine peritoneal macrophages. J. Neuroimmunol. 2003; 136: 9–16
  • Vujic V., Stanojevic S., Dimitrijevic M. Methionine-enkephalin stimulates hydrogen peroxide and nitric oxide production in rat peritoneal macrophages: Interaction of μ, δ, and κ opioid receptors. Neuroimmunomodulation 2004; 11: 392–403
  • Wang X., Seed B. A PCR primer bank for quantitative gene expression analysis. Nucl. Acids Res. 2003; 31: e154
  • Williams K. L., Fuller C. R., Dieleman L. A., DaCosta C. M., Haldeman K. M., Sartor R. B., Lund P. K. Enhanced survival and mucosal repair after dextran sodium sulfate-induced colitis in transgenic mice that over-express growth hormone. Gastroenterology 2001; 120: 925–937
  • Zagon I. S., Wu Y., McLaughlin P. J. Opioid growth factor is present in human and mouse gastrointestinal tract and inhibits DNA synthesis. Am. J. Physiol. 1997; 272: R1094–R1104
  • Zaitsev S. V., Sazanov L. A., Koshkin A. A., Sud'ina G. F., Varfolomeev S. D. Respiratory burst inhibition in human neutrophils by ultra-low doses of [D-Ala2]-methionine enkephalinamide. FEBS Lett. 1991; 291: 84–86
  • Zurawski G., Benedik M., Kamb B. J., Abrams J. S., Zurawski S. M., Lee F. D. Activation of mouse T-helper cells induces abundant pre-proenkephalin mRNA synthesis. Science 1986; 232: 772–775

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.