4,625
Views
49
CrossRef citations to date
0
Altmetric
Review Article

Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease

, &
Pages 87-124 | Received 24 Apr 2018, Accepted 05 Apr 2019, Published online: 14 Jun 2019

References

  • Accapezzato D, Visco V, Francavilla V, Molette C, Donato T, Paroli M, Mondelli M, Doria M, Torrisi M, Barnaba V. 2005. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J Exp Med. 202:817–828.
  • Adachi K, Yamada N, Yoshida Y, Yamamoto O. 2013. Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin. Exp Dermatol. 22:278–283.
  • Ahamed M, Akhtar M, Raja M, Ahmad I, Siddiqui M, AlSalhi M, Alrokayan S. 2011. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin, and bax/bcl-2 pathways: Role of oxidative stress. Nanomed Nanotechnol Biol Med. 7:904–913.
  • Aimanianda V, Haensler J, Lacroix-Desmazes S, Kaveri S, Bayry J. 2009. Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci. 30:287–295.
  • Aldossari A, Shannahan J, Podila R, Brown J. 2015. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro. 29:195–203.
  • Alessandrini F, Vennemann A, Gschwendtner S, Neumann A, Rothballer M, Seher T, Wimmer M, Kublik S, Traidl-Hoffmann C, Schloter M. 2017. Pro-Inflammatory versus immuno-modulatory effects of silver nanoparticles in the lung: Critical role of dose, size, and surface modification. Nanomaterials. 7:300–311.
  • Alsaleh N, Persaud I, Brown J. 2016. Silver nanoparticle-directed mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PloS One. 11:e0167366.
  • Alsaleh N, Brown J. 2018. Exposure to silver nanoparticles primes mast cells for enhanced IgE/FcɛR1-mediated activation. J Immunol. 200:105.113–105.
  • [AAAAI] American Academy of Allergy Asthma & Immunology. 2015. Allergy Statistics. https://www.aaaai.org/about-aaaai/newsroom/allergy-statistics.
  • Amin K. 2012. The role of mast cells in allergic inflammation. Respir Med. 106:9–14.
  • Anderson S, Siegel P, Meade B. 2011. The LLNA: A brief review of recent advances and limitations. J Allergy. 2011:424203.
  • Andujar P, Simon-Deckers A, Galateau-Salle F, Fayard B, Beaune G, Clin B, Billon-Galland M, Durupthy O, Pairon J, Doucet J, et al. 2014. Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Particle Fibre Toxicol. 11:23.
  • Ansel J, Luger T, Lowry D, Perry P, Roop D, Mountz J. 1988. The expression and modulation of IL-1 alpha in murine keratinocytes. J Immunol. 140:2274–2278.
  • Antonios D, Ade N, Kerdine-Römer S, Assaf-Vandecasteele H, Larangé A, Azouri H, Pallardy M. 2009. Metallic haptens induce differential phenotype of human dendritic cells through activation of mitogen-activated protein kinase and NF-κB pathways. Toxicol In Vitro. 23:227–234.
  • Arai Y, Miyayama T, Hirano S. 2015. Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages. Toxicology. 328:84–92.
  • Armand L, Dagouassat M, Belade E, Simon-Deckers A, le Gouvello S, Tharabat C, Duprez C, Andujar P, Pairon J, Boczkowski J, et al. 2013. Titanium dioxide nanoparticles induce matrix metalloprotease 1 in human pulmonary fibroblasts partly via an IL-1β-dependent mechanism. Am J Respir Cell Mol Biol. 48:354–363.
  • Arruda L, Sole D, Baena-Cagnani C, Naspitz C. 2005. Risk factors for asthma and atopy. Curr Opin Allergy Clin Immunol. 5:153–159.
  • Artik S, von Vultée C, Gleichmann E, Schwarz T, Griem P. 1999. Nickel allergy in mice: Enhanced sensitization capacity of nickel at higher oxidation states. J Immunol. 163:1143–1152.
  • Arvizo R, Miranda O, Thompson M, Pabelick C, Bhattacharya R, Robertson J, Rotello V, Prakash Y, Mukherjee P. 2010. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 10:2543–2548.
  • Ashikaga T, Hoya M, Itagaki H, Katsumura Y, Aiba S. 2002. Evaluation of CD86 expression and MHC Class II molecule internalization in THP-1 human monocyte cells as predictive endpoints for contact sensitizers. Toxicol In Vitro. 16:711–716.
  • Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa M, Ito Y, Suzuki H, Toyoda H. 2006. Development of an in vitro skin sensitization test using human cell lines: The human Cell Line Activation Test (h-CLAT): I. Optimization of the h-CLAT protocol. Toxicol In Vitro. 20:767–773.
  • Auttachoat W, McLoughlin C, White K, Smith M. 2014. Route-dependent systemic and local immune effects following exposure to solutions prepared from titanium dioxide nano-particles. J Immunotoxicol. 11:273–282.
  • Bakshi M, Zhao L, Smith R, Possmayer F, Petersen N. 2008. Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophys J. 94:855–868.
  • Baroli B. 2010. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality? J Pharm Sci. 99:21–50.
  • Baroli B, Ennas M, Loffredo F, Isola M, Pinna R, Lopez-Quintela M. 2007. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 127:1701–1712.
  • Barreto E, Serra M, dos Santos R, dos Santos C, Hickmann J, Cotias A, Pao C, Trindade S, Schimidt V, Giacomelli C, et al. 2015. Local Administration of gold nanoparticles prevents pivotal pathological changes in murine models of atopic asthma. J Biomed Nanotechnol. 11:1038–1050.
  • Basketter D, Lea L, Cooper K, Ryan C, Gerberick G, Dearman R, Kimber I. 1999. Identification of metal allergens in the local lymph node assay. Am J Contact Dermatitis. 10:207–212.
  • Bastos V, de Oliveira J, Brown D, Jonhston H, Malheiro E, Daniel-da-Silva A, Duarte I, Santos C, Oliveira H. 2016. The influence of citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicol Lett. 249:29–41.
  • Beduneau A, Ma Z, Grotepas C, Kabanov A, Rabinow B, Gong N, Mosley R, Dou H, Boska M, Gendelman H. 2009. Facilitated monocyte-macrophage uptake and tissue distribution of super-parmagnetic iron-oxide nanoparticles. PloS One. 4:e4343.
  • Beer A, Holzapfel K, Neudorfer J, Piontek G, Settles M, Kronig H, Peschel C, Schlegel J, Rummeny EJ, Bernhard H. 2008. Visualization of antigen-specific human cytotoxic T-lymphocytes labeled with super-paramagnetic iron-oxide particles. Eur Radiol. 18:1087–1095.
  • Belloni Fortina A, Cooper S, Spiewak R, Fontana E, Schnuch A, Uter W. 2015. Patch test results in children and adolescents across Europe. Analysis of the ESSCA Network 2002-2010. Pediat Allergy Immunol. 26:446–455.
  • Bennett S, Zhou D, Mielke R, Keller A. 2012. Photoinduced disaggregation of TiO2 nanoparticles enables transdermal penetration. PloS One. 7:e48719.
  • Bergamaschi E, Bussolati O, Magrini A, Bottini M, Migliore L, Bellucci S, Iavicoli I, Berga-maschi A. 2006. Nanomaterials and lung toxicity: Interactions with airways cells and relevance for occupational health risk assessment. Int J Immunopathol Pharmacol. 19:3–10.
  • Bergfors E, Bjorkelund C, Trollfors B. 2005. Nineteen cases of persistent pruritic nodules and contact allergy to aluminium after injection of commonly used aluminium-adsorbed vaccines. Eur J Pediatr. 164:691–697.
  • Berntsen P, Park C, Rothen-Rutishauser B, Tsuda A, Sager T, Molina R, Donaghey T, Alencar A, Kasahara D, Ericsson T, et al. 2010. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells. J Royal Soc Interface. 7:S331–S340.
  • Bianchi M, Allegri M, Chiu M, Costa AL, Blosi M, Ortelli S, Bussolati O, Bergamaschi E. 2017. Lipopolysaccharide adsorbed to the bio-corona of TiO2 nanoparticles powerfully activates selected pro-inflammatory transduction pathways. Front Immunol. 8:866.
  • Bianco C, Visser MJ, Pluut OA, Svetličić V, Pletikapić G, Jakasa I, Riethmuller C, Adami G, Larese Filon F, Schwegler-Berry D, et al. 2016. Characterization of silver particles in the stratum corneum of healthy subjects and atopic dermatitis patients dermally exposed to a silver-containing garment. Nanotoxicology. 10:1480–1491.
  • Biniek K, Levi K, Dauskardt R. 2012. Solar UV radiation reduces the barrier function of human skin. Proc Natl Acad Sci USA 109:17111–17116.
  • Blank F, Gerber P, Rothen-Rutishauser B, Sakulkhu U, Salaklang J, de Peyer K, Gehr P, Nicod L, Hofmann H, Geiser T, et al. 2011. Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology. 5:606–621.
  • Blank F, Fytianos K, Seydoux E, Rodriguez-Lorenzo L, Petri-Fink A, von Garnier C, Rothen-Rutishauser B. 2017. Interaction of biomedical nanoparticles with the pulmonary immune system. J Nanobiotechnol. 15:6.
  • Blum J, Wearsch P, Cresswell P. 2013. Pathways of antigen processing. Annu Rev Immunol. 31:443–473.
  • Boonrungsiman S, Suchaoin W, Chetprayoon P, Viriya-empikul N, Aueviriyavit S, Maniratanachote R. 2017. Shape and surface properties of titanate nanomaterials influence differential cellular uptake behavior and biological responses in THP-1 cells. Biochem Biophys Rep. 9:203–210.
  • Boscolo P, Bellante V, Leopold K, Maier M, Di Giampaolo L, Antonucci A, Iavicoli I, Tobia L, Paoletti A, Montalti M, et al. 2010. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of non-atopic women. J Biol Regul Homeost Agents. 24:207–214.
  • Boverhof D, Billington R, Gollapudi B, Hotchkiss J, Krieger S, Poole A, Wiescinski C, Woolhiser M. 2008. Respiratory sensitization and allergy: Current research approaches and needs. Toxicol Appl Pharmacol. 226:1–13.
  • Braakhuis H, Oomen A, Cassee F. 2016. Grouping nanomaterials to predict their potential to induce pulmonary inflammation. Toxicol Appl Pharmacol. 299:3–7.
  • Brandenberger C, Rowley N, Jackson-Humbles D, Zhang Q, Bramble L, Lewandowski R, Wagner J, Chen W, Kaplan B, Kaminski N, et al. 2013. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Part Fibre Toxicol. 10:26.
  • Braydich-Stolle L, Schaeublin N, Murdock R, Jiang J, Biswas P, Schlager J, Hussain S. 2009. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res. 11:1361–1374.
  • Braydich-Stolle L, Speshock J, Castle A, Smith M, Murdock R, Hussain S. 2010. Nanosized aluminum altered immune function. ACS Nano. 4:3661–3670.
  • Büdinger L, Hertl M, Büdinger L. 2000. Immunologic mechanisms in hypersensitivity reactions to metal ions: An overview. Allergy. 55:108–115.
  • Buzea C, Pacheco I, Robbie K. 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2:MR17–MR71.
  • Caicedo M, Pennekamp P, McAllister K, Jacobs J, Hallab N. 2010. Soluble ions more than particulate cobalt-alloy implant debris induce monocyte co-stimulatory molecule expression and release of pro-inflammatory cytokines critical to metal-induced lymphocyte reactivity. J Biomed Mater Res. A 93:1312–1321.
  • Calatayud M, Sanz B, Raffa V, Riggio C, Ibarra M, Goya G. 2014. The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake. Biomaterials. 35:6389–6399.
  • Capasso L, Camatini M, Gualtieri M. 2014. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett. 226:28–34.
  • Casals E, Pfaller T, Duschl A, Oostingh G, Puntes V. 2011. Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small. 7:3479–3486.
  • Castranova V. 2011. Overview of current toxicological knowledge of engineered nanoparticles. J Occup Environ Med. 53:S14–S17.
  • Centers for Disease Control and Prevention. 2017. Allergies. Atlanta, GA: CDC.
  • Chaput N, Flament C, Viaud S, Taieb J, Roux S, Spatz A, Andre F, LePecq J, Boussac M, Garin J, et al. 2006. Dendritic cell derived-exosomes: Biology and clinical implementations. J Leukoc Biol. 80:471–478.
  • Chary A, Hennen J, Klein S, Serchi T, Gutleb A, Blömeke B. 2018. Respiratory sensitization: Toxicological point of view on the available assays. Arch Toxicol. 92:803–822.
  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R. 2008. Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 25:241–258.
  • Chen E, Garnica M, Wang Y, Chen C, Chin W. 2011. Mucin secretion induced by titanium dioxide nanoparticles. PloS One. 6:e16198.
  • Chen E, Garnica M, Wang Y, Mintz A, Chen C, Chin W. 2012. A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Particle Fibre Toxicol. 9:2–14.
  • Cheng T, Tseng Y, Sun C, Chu C. 2008. Contact sensitization to metals in Taiwan. Contact Derm. 59:353–360.
  • Chilcott R, and Price S, editors. 2008. Principles and Practice of Skin Toxicology. Chichester: John WIley and Sons Ltd.
  • Chipinda I, Hettick J, Siegel P. 2011. Haptenation: Chemical reactivity and protein binding. J Allergy. 2011:839682.
  • Cho W, Duffin R, Howie S, Scotton C, Wallace W, Macnee W, Bradley M, Megson I, Donaldson K. 2011. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27.
  • Choi J, Park Y, Lee E, Jeong S, Kim S, Kim M, Son S. 2011. A safety assessment of phototoxicity and sensitization of SiO2 nanoparticles. Mol Cell Toxicol. 7:171–176.
  • Chroneos Z, Sever-Chroneos Z, Shepherd V. 2010. Pulmonary surfactant: An immunological perspective. Cell Physiol Biochem. 25:13–26.
  • Chu M, Wu Q, Wang J, Hou S, Miao Y, Peng J, Sun Y. 2007. In vitro and in vivo transdermal delivery capacity of quantum dots through mouse skin. J Nanotechnol. 18:455103.
  • Chuang H, Hsiao T, Wu C, Chang H, Lee C, Chang C, Cheng T. 2013. Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models. Int J Nanomed. 8:4495–4506.
  • Cirla A. 1994. Cobalt-related asthma: Clinical and immunological aspects. Sci Total Environ. 150:85–94.
  • Coelho S, Patri A, Wokovich A, McNeil S, Howard P, Miller S. 2016. Repetitive application of sunscreen containing titanium dioxide nanoparticles on human skin. JAMA Dermatol. 152:470–472.
  • Contado C. 2015. Nanomaterials in consumer products: A challenging analytical problem. Front Chem. 3:48.
  • Coquette A, Berna N, Vandenbosch A, Rosdy M, de Wever B, Poumay Y. 2003. Analysis of interleukin-1alpha (IL-1alpha) and interleukin-8 (IL-8) expression and release in in vitro reconstructed human epidermis for the prediction of in vivo skin irritation and/or sensitization. Toxicol In Vitro. 17:311–321.
  • Corbo C, Molinaro R, Parodi A, Toledano Furman N, Salvatore F, Tasciotti E. 2016. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 11:81–100.
  • Crichton RR. 2017. Metal Toxicity–An Introduction. In: Crichton RR , Ward RJ, Hider RC, editors. Metal Chelation in Medicine. pp. 1–23. DOI:10.1039/9781782623892.
  • Crosera M, Adami G, Mauro M, Bovenzi M, Baracchini E, Filon F. 2016. In vitro dermal penetration of nickel nanoparticles. Chemosphere. 145:301–306.
  • Crosera M, Prodi A, Mauro M, Pelin M, Florio C, Bellomo F, Adami G, Apostoli P, De Palma G, Bovenzi M, et al. 2015. Titanium dioxide nanoparticle penetration into the skin and effects on HaCaT cells. Int J Environ Res Pub Health. 12:9282–9297.
  • Crotzer V, Blum J. 2009. Autophagy and its role in MHC-mediated antigen presentation. J Immunol. 182:3335–3341.
  • Daniela P, Vladimir Z, Petr K, Zdenka F, Stepanka V, Martin K, Tomas N, Jaroslav S, Nadezda Z, Otakar M, et al. 2016. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO2 nanoparticles. J Breath Res. 10:036004.
  • Davis M, Wang M, Yiannias J, Keeling J, Connolly S, Richardson D, Farmer S. 2011. Patch testing with a large series of metal allergens: Findings from more than 1,000 patients in one decade at Mayo Clinic. Dermatitis. 22:256–271.
  • de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. 2006. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy. 36:1469–1479.
  • de Haar C, Kool M, Hassing I, Bol M, Lambrecht B, Pieters R. 2008. Lung dendritic cells are stimulated by ultrafine particles and play a key role in particle adjuvant activity. J Allergy Clin Immunol. 121:1246–1254.
  • de Jong W, Arts J, De Klerk A, Schijf M, Ezendam J, Kuper C, van Loveren H. 2009. Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure. Toxicology. 261:103–111.
  • de Marzi M, Saraceno M, Mitarotonda R, Todone M, Fernandez M, Malchiodi E, Desimone M. 2017. Evidence of size-dependent effect of silica micro- and nano-particles on basal and specialized monocyte functions. Ther Deliv. 8:1035–1049.
  • de Matteis V, Cascione M, Brunetti V, Toma C, Rinaldi R. 2016. Toxicity assessment of anatase and rutile titanium dioxide nanoparticles: The role of degradation in different pH conditions and light exposure. Toxicol In Vitro. 37:201–210.
  • de Stefano D, Carnuccio R, Maiuri M. 2012. Nanomaterials toxicity and cell death modalities. J Drug Deliv. 2012:167896.
  • de Wall S, Painter C, Stone J, Bandaranayake R, Wiley D, Mitchison T, Stern L, de Decker B. 2006. Noble metals strip peptides from Class II MHC proteins. Nat Chem Biol. 2:197–201.
  • Dearman R, Kimber I. 2003. Factors influencing the induction phase of skin sensitization. Am J Contact Derm. 14:188–194.
  • Demento S, Cui W, Criscione J, Stern E, Tulipan J, Kaech S, Fahmy T. 2012. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 33:4957–4964.
  • Desch A, Randolph G, Murphy K, Gautier E, Kedl R, Lahoud M, Caminschi I, Shortman K, Henson P, Jakubzick C. 2011. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J Exp Med. 208:1789–1797.
  • Devanabanda M, Latheef S, Madduri R. 2016. Immunotoxic effects of gold and silver nanoparticles: Inhibition of mitogen-induced proliferative responses and viability of human and murine lymphocytes in vitro. J Immunotoxicol. 13:897–902.
  • Di Gioacchino M, Verna N, Di Giampaolo L, di Claudio F, Turi M, Perrone A, Petrarca C, Mariani-Costantini R, Sabbioni E, Boscolo P. 2007. Immunotoxicity and sensitizing capacity of metal compounds depend on speciation. Int J Immunopathol Pharmacol. 20:15–22.
  • Diepgen T, Coenraads P. 1999. The epidemiology of occupational contact dermatitis. Int Arch Occup Environ Health. 72:496–506.
  • Dingjan I, Verboogen D, Paardekooper L, Revelo N, Sittig S, Visser L, von Mollard G, Henriet S, Figdor C, Ter Beest M. 2016. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci Rep. 6:22064.
  • Dobrovolskaia M, Germolec D, Weaver J. 2009a. Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol. 4:411–414.
  • Dobrovolskaia M, Neun B, Man S, Ye X, Hansen M, Patri A, Crist R, McNeil S. 2014. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomed Nanotechnol Biol Med. 10:1453–1463.
  • Dobrovolskaia M, Patri A, Zheng J, Clogston J, Ayub N, Aggarwal P, Neun B, Hall J, McNeil S. 2009b. Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles. Nanomedicine. 5:106–117.
  • Dong H, Wen Z, Chen L, Zhou N, Liu H, Dong S, Hu H, Mou Y. 2018. Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells. Intl J Nanomed. 13:3353–3365.
  • Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S, Kohler A, Peschke K, Vohringer D, Waskow C, Krieg T, et al. 2011. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity. 34:973–984.
  • Elder A, Oberdörster G. 2006. Translocation and effects of ultrafine particles outside of the lung. Clin Occup Environ Med. 5:785–796.
  • Elder A, Vidyasagar S, DeLouise L. 2009. Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 1:434–450.
  • El-Zein M, Infante RC, Malo J, Gautrin D. 2005. Is metal fume fever a determinant of welding related respiratory symptoms and/or increased bronchial responsiveness? A longitudinal study. Occup Environ Med. 62:688–694.
  • Erle D, Sheppard D. 2014. The cell biology of asthma. J Cell Biol. 205:621–631.
  • Evans DE, Turkevich LA, Roettgers CT, Deye GJ, Baron PA. 2013. Dustiness of fine and nanoscale powders. Ann Occup Hyg. 57:261–277.
  • Fage S, Faurschou A, Thyssen J. 2014. Copper hypersensitivity. Contact Derm. 71:191–201.
  • Fahy J. 2009. Eosinophilic and neutrophilic inflammation in asthma: Insights from clinical studies. Proc Am Thorac Soc. 6:256–259.
  • Falta MT, Pinilla C, Mack DG, Tinega AN, Crawford F, Giulianotti M, Santos R, Clayton GM, Wang Y, Zhang X, et al. 2013. Identification of beryllium-dependent peptides recognized by CD4+ T-cells in chronic beryllium disease. J Exp Med. 210:1403–1418.
  • Faurschou A, Menne T, Johansen J, Thyssen J. 2011. Metal allergen of the 21st century-a review on exposure, epidemiology and clinical manifestations of palladium allergy. Contact Derm. 64:185–195.
  • Fehrenbach H, Wagner C, Wegmann M. 2017. Airway remodeling in asthma: What really matters. Cell Tissue Res. 367:551–569.
  • Feltis B, Elbaz A, Wright P, Mackay G, Turney T, Lopata A. 2015. Characterizing the inhibitory action of zinc oxide nanoparticles on allergic-type mast cell activation. Mol Immunol. 66:139–146.
  • Fernandes R, Smyth N, Muskens OL, Nitti S, Heuer-Jungemann A, Ardern-Jones M, Kanaras A. 2015. Interactions of skin with gold nanoparticles of different surface charge, shape, and functionality. Small. 11:713–721.
  • Ferreira I, Silva A, Martins J, Neves B, Cruz M. 2018. Nature and kinetics of redox imbalance triggered by respiratory and skin chemical sensitizers on the human monocytic cell line THP-1. Redox Biol. 16:75–86.
  • Filon F, Crosera M, Adami G, Bovenzi M, Rossi F, Maina G. 2011. Human skin penetration of gold nanoparticles through intact and damaged skin. Nanotoxicology. 5:493–501.
  • Filon F, Crosera M, Mauro M, Baracchini E, Bovenzi M, Montini T, Fornasiero P, Adami G. 2016. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin. Environ Pollut. 214:497–503.
  • Foldbjerg R, Olesen P, Hougaard M, Dang D, Hoffmann H, Autrup H. 2009. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 190:156–162.
  • Frohlich E. 2015. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo. Intl J Nanomed. 10:3761–3778.
  • Galbiati V, Cornaghi L, Gianazza E, Potenza M, Donetti E, Marinovich M, Corsini E. 2018. In vitro assessment of silver nanoparticles immunotoxicity. Food Chem Toxicol. 112:363–374.
  • Gamerdinger K, Moulon C, Karp D, van Bergen J, Koning F, Wild D, Pflugfelder U, Weltzien H. 2003. A new type of metal recognition by human T-cells: Contact residues for peptide-independent bridging of T-cell receptor and Major Histocompatibility Complex by nickel. J Exp Med. 197:1345–1353.
  • Gatoo M, Naseem S, Arfat M, Mahmood Dar A, Qasim K, Zubair S. 2014. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res Int. 2014:1.
  • Gatto F, Moglianetti M, Pompa P, Bardi G. 2018. Platinum nanoparticles decrease reactive oxygen species and modulate gene expression without alteration of immune responses in THP-1 monocytes. Nanomaterials. 8:pii E392.
  • Gavett S, Haykal-Coates N, Copeland L, Heinrich J, Gilmour M. 2003. Metal composition of ambient PM2.5 influences severity of allergic airways disease in mice. Environ Health Perspect. 111:1471–1477.
  • Geetha C, Remya N, Leji K, Syama S, Reshma S, Sreekanth P, Varma H, Mohanan P. 2013. Cells-nano interactions and molecular toxicity after delayed hypersensitivity, in guinea pigs on exposure to hydroxyapatite nanoparticles. Colloids Surf B Biointerf. 112:204–212.
  • George R, Merten S, Wang T, Kennedy P, Maitz P. 2014. In vivo analysis of dermal and systemic absorption of silver nanoparticles through healthy human skin. Aus J Dermatol. 55:185–190.
  • Gerberick G, Vassallo J, Bailey R, Chaney J, Morrall S, Lepoittevin J. 2004. Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci. 81:332–343.
  • Ghio A. 2008. Mechanism of asthmatic exacerbation by ambient air pollution particles. Expert Rev Respir Med. 2:109–118.
  • Glass D, Mazhar M, Xiang S, Dean P, Simpson P, Priestly B, Plebanski M, Abramson M, Sim M, Dennekamp M. 2017. Immunological effects among workers who handle engineered nanoparticles. Occup Environ Med. 74:868–876.
  • Glenny A, Buttle G, Stevens M. 1931. Rate of disappearance of diphtheria toxoid injected into rabbits and guinea‐pigs: Toxoid precipitated with alum. J Pathol Bacteriol. 34:267–275.
  • Glista-Baker E, Taylor A, Sayers B, Thompson E, Bonner J. 2014. Nickel nanoparticles cause exaggerated lung and airway remodeling in mice lacking the T-box transcription factor, TBX21 (T-bet). Particle Fibre Toxicol. 11:7.
  • Goldstein A, Soroka Y, Frušić-Zlotkin M, Lewis A, Kohen R. 2016. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway. Nanoscale. 8:11748–11759.
  • Gontier E, Ynsa M-D, Bíró T, Hunyadi J, Kiss B, Gáspár K, Pinheiro T, Silva J-N, Filipe P, Stachura J, et al. 2008. Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology. 2:218–231.
  • Goon A, Goh C. 2005. Metal allergy in Singapore. Contact Dermatitis. 52:130–132.
  • Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Latendresse JR, Warbitton AR, Yu WW, Colvin VL, Walker NJ, et al. 2009. Quantitative determination of skin penetration of PEG-coated CdSe quantum dots in dermabraded but not intact SKH-1 hairless mouse skin. Toxicol Sci. 111:37–48.
  • Gorbet M, Sefton M. 2005. Endotoxin: The uninvited guest. Biomaterials. 26:6811–6817.
  • Granum B, Gaarder PI, Groeng E, Leikvold R, Namork E, Lovik M. 2001a. Fine particles of widely-different composition have an adjuvant effect on the production of allergen-specific antibodies. Toxicol Lett. 118:171–181.
  • Granum B, Gaarder P, Løvik M. 2001b. IgE adjuvant effect caused by particles - immediate and delayed effects. J Toxicol. 156:149–159.
  • Gualtieri M, Skuland T, Iversen T, Lag M, Schwarze P, Bilanicova D, Pojana G, Refsnes M. 2012. Importance of agglomeration state and exposure conditions for uptake and pro-inflammatory responses to amorphous silica nanoparticles in bronchial epithelial cells. Nanotoxicology. 6:700–712.
  • Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, Taylor A, McCulloch M, Trotter J, Kinsley L, et al. 2010. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci. 118:140–149.
  • Gulson B, Wong H, Korsch M, Gomez L, Casey P, McCall M, McCulloch M, Trotter J, Stauber J, Greenoak G. 2012. Comparison of dermal absorption of zinc from different sunscreen formulations and differing UV exposure based on stable isotope tracing. Sci Total Environ. 420:313–318.
  • Gustafsson A, Jonasson S, Sandstrom T, Lorentzen J, Bucht A. 2014. Genetic variation influences immune responses in sensitive rats following exposure to TiO2 nanoparticles. Toxicology. 326:74–85.
  • Hahn A, Fuhlrott J, Loos A, Barcikowski S. 2012. Cytotoxicity and ion release of alloy nanoparticles. J Nanopart Res. 14:1.
  • Hamilton R, Buckingham S, Holian A. 2014. The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution. Int J Mol Sci. 15:6815–6830.
  • Hammad H, Lambrecht B. 2015. Barrier epithelial cells and the control of Type 2 immunity. J Immunity. 43:29–40.
  • Han B, Guo J, Abrahaley T, Qin L, Wang L, Zheng Y, Li B, Liu D, Yao H, Yang J, et al. 2011. Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization. PloS One. 6:e17236.
  • Han H, Park Y, Park H, Lee K, Um K, Park J, Lee J. 2016. Toxic and adjuvant effects of silica nanoparticles on ovalbumin-induced allergic airway inflammation in mice. Respir Res. 17:60.
  • Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett D. 2009. The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett. 4:1409.
  • Heng B, Zhao X, Tan E, Khamis N, Assodani A, Xiong S, Ruedl C, Ng K, Loo J. 2011. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol. 85:1517–1528.
  • Henriksen-Lacey M, Bramwell V, Christensen D, Agger E, Andersen P, Perrie Y. 2010a. Lipo-somes based on dimethyldioctadecylammonium promote a depot effect and enhance immu-nogenicity of soluble antigen. J Control Rel. 142:180–186.
  • Henriksen-Lacey M, Christensen D, Bramwell V, Lindenstrøm T, Agger E, Andersen P, Perrie Y. 2010b. Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J Control Rel. 145:102–108.
  • Hirai T, Yoshikawa T, Nabeshi H, Yoshida T, Akase T, Yoshioka Y, Itoh N, Tsutsumi Y. 2012a. Dermal absorption of amorphous nanosilica particles after topical exposure for three days. Pharmazie. 67:742–743.
  • Hirai T, Yoshikawa T, Nabeshi H, Yoshida T, Tochigi S, Ichihashi K, Uji M, Akase T, Nagano K, Abe Y, et al. 2012b. Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Particle Fibre Toxicol. 9:3.
  • Hirai T, Yoshioka Y, Izumi N, Ichihashi K, Handa T, Nishijima N, Uemura E, Sagami K, Takahashi H, Yamaguchi M, et al. 2016. Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat Nanotechnol. 11:808–816.
  • Hirai T, Yoshioka Y, Takahashi H, Ichihashi K, Udaka A, Mori T, Nishijima N, Yoshida T, Nagano K, Kamada H, et al. 2015. Cutaneous exposure to agglomerates of silica nanoparticles and allergen results in IgE-biased immune response and increased sensitivity to anaphylaxis in mice. Particle Fibre Toxicol. 12:16.
  • Hirai T, Yoshioka Y, Takahashi H, Ichihashi K-i, Yoshida T, Tochigi S, Nagano K, Abe Y, Kamada H, Tsunoda S-i, et al. 2012. Amorphous silica nanoparticles enhance cross-presentation in murine dendritic cells. Biochem Biophys Res Commun. 427:553–556.
  • Hiroike M, Sakabe J, Kobayashi M, Hirakawa S, Inoh A, Tokura Y. 2013. Acicular, but not globular, titanium dioxide nanoparticles stimulate keratinocytes to produce cytokines independently of inflammasome. J Dermatol Sci. 69:e81.
  • Hoang M, Lee H, Lee H, Jung S, Choi N, Vo M, Nguyen-Pham T, Kim H, Park I, Lee J. 2015. Branched polyethylenimine-superparamagnetic iron oxide nanoparticles (bPEI-SPIONs) improve immunogenicity of tumor antigens and enhance TH1 polarization of dendritic cells. J Immunol Res. 2015:1.
  • Hohlfeld J. 2002. The role of surfactant in asthma. Respir Res. 3:4.
  • Hohlfeld J, Ahlf K, Enhorning G, Balke K, Erpenbeck V, Petschallies J, Hoymann H, Fabel H, Krug N. 1999. Dysfunction of pulmonary surfactant in asthmatics after segmental allergen challenge. Am J Respir Crit Care Med. 159:1803–1809.
  • Hol P, Kristoffersen E, Gjerdet N, Pellowe A. 2018. Novel nanoparticulate and ionic titanium antigens for hypersensitivity testing. Int J Mol Sci. 19:pii:E1101.
  • Holleran W, Uchida Y, Halkier‐Sorensen L, Haratake A, Hara M, Epstein J, Elias P. 1997. Structural and biochemical basis for the UVB-induced alterations in epidermal barrier function. Photodermatol Photoimmunol Photomed. 13:117–128.
  • Holmes A, Song Z, Moghimi H, Roberts M. 2016. Relative penetration of zinc oxide and zinc ions into human skin after application of different zinc oxide formulations. ACS Nano. 10:1810–1819.
  • Holt P, Oliver J, Bilyk N, McMenamin C, McMenamin P, Kraal G, Thepen T. 1993. Down-regulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med. 177:397–407.
  • Hong C, Oh S, Lee H, Huh K, Lee S. 1986. Occupational asthma caused by nickel and zinc. Korean J Intern Med. 1:259–262.
  • Horie M, Stowe M, Tabei M, Kuroda E. 2015. Pharyngeal aspiration of metal oxide nanoparticles showed potential of allergy aggravation effect to inhaled ovalbumin. Inhal Toxicol. 27:181–190.
  • Horie M, Stowe M, Tabei M, Kuroda E. 2016. Metal ion release of manufactured metal oxide nanoparticles is involved in the allergic response to inhaled ovalbumin in mice. Occup Dis Environ Med. 04:17.
  • Hostynek J. 2003. Factors determining percutaneous metal absorption. Food Chem Toxicol. 41:327–345.
  • Hostynek J, Hinz R, Lorence C, Price M, Guy R. 1993. Metals and the skin. Crit Rev Toxicol. 23:171–235.
  • Hsiao Y, Shen C, Huang C, Lin Y, Jan T. 2018. Iron oxide nanoparticles attenuate T helper 17 cell responses in vitro and in vivo. Int Immunopharmacol. 58:32–39.
  • Huang K, Lee Y, Chen H, Liao H, Chiang B, Cheng T. 2015. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice. J Hazard Mat. 297:304–312.
  • Huang Y, Liu H, Xiong X, Chen Y, Tan W. 2009. Nanoparticle-mediated IgE-receptor aggregation and signaling in RBL mast cells. J Am Chem Soc. 131:17328–17334.
  • Huang Y, Yu F, Park Y, Wang J, Shin M, Chung H, Yang V. 2010. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. J Biomaterials. 31:9086–9091.
  • Humeniuk P, Dubiela P, Hoffmann-Sommergruber K. 2017. Dendritic cells and their role in allergy: Uptake, proteolytic processing, and presentation of allergens. Int J Mol Sci. 18:1491.
  • Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen L, Martens J, Billon-Galland M, Fleury-Feith J, Moisan F, Pairon J, et al. 2009. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology. 260:142–149.
  • Hussain S, Smulders S, de Vooght V, Ectors B, Boland S, Marano F, van Landuyt KL, Nemery B, Hoet P, Vanoirbeek J. 2012. Nano-titanium dioxide modulates the dermal sensitization potency of DNCB. Particle Fibre Toxicol. 9:15.
  • Hussain S, Vanoirbeek J, Luyts K, de Vooght V, Verbeken E, Thomassen L, Martens J, Dinsdale D, Boland S, Marano F, et al. 2011. Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J. 37:299–309.
  • Iannuccelli V, Bertelli D, Romagnoli M, Scalia S, Maretti E, Sacchetti F, Leo E. 2014. In vivo penetration of bare and lipid-coated silica nanoparticles across the human stratum corneum. Colloids Surf B Biointerf. 122:653–661.
  • Ilinskaya A, Dobrovolskaia M. 2016. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future. Toxicol Appl Pharmacol. 299:70–77.
  • Ilves M, Palomaki J, Vippola M, Lehto M, Savolainen K, Savinko T, Alenius H. 2014. Topically-applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Particle Fibre Toxicol. 11:38.
  • Ishii N, Fitrilawati F, Manna A, Akiyama H, Tamada Y, Tamada K. 2008. Gold nanoparticles used as a carrier enhance production of anti-hapten IgG in rabbit: A study with azobenzene-dye as a hapten presented on the entire surface of gold nanoparticles. Biosci Biotechnol Biochem. 72:124–131.
  • Jaitley S, Saraswathi T. 2012. Pathophysiology of Langerhans cells. J Oral Maxillofac Pathol. 16:239–244.
  • Jakubzick C, Tacke F, Llodra J, Rooijen N, Randolph G. 2006. Modulation of dendritic cell trafficking to and from the airways. J Immunol. 176:3578–3584.
  • Jang S, Park J, Cha H, Jung S, Lee J, Jung S, Kim J, Kim S, Lee C, Park H. 2012. Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation. Intl J Nanomed. 7:1329–1343.
  • Jassby D, Farner Budarz J, Wiesner M. 2012. Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ Sci Technol. 46:6934–6941.
  • Jatana S, Palmer B, Phelan S, DeLouise L. 2017a. Immunomodulatory effects of nanoparticles on skin allergy. Sci Rep. 7:3979.
  • Jatana S, Palmer B, Phelan S, Gelein R, DeLouise L. 2017b. In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation. Particle Fibre Toxicol. 14:12.
  • Jeong J, Han Y, Poland C, Cho WS. 2015. Response-metrics for acute lung inflammation pattern by cobalt-based nanoparticles. Part Fibre Toxicol. 12:13.
  • Jeong S, Kim H, Ryu H, Ryu W, Park Y, Bae H, Jang Y, Son S. 2013. ZnO nanoparticles induce TNF-α expression via ROS-ERK-Egr-1 pathway in human keratinocytes. J Dermatol Sci. 72:263–273.
  • Jia J, Zhang Y, Xin Y, Jiang C, Yan B, Zhai S. 2018. Interactions between nanoparticles and dendritic cells: From the perspective of cancer immunotherapy. Front Oncol. 8:404.
  • Jiang H, Liu F, Yang H, Li Y. 2012. Effects of cobalt nanoparticles on human T cells in vitro . Biol Trace Elem Res. 146:23–29.
  • Jiménez-Periáñez A, Abos Gracia B, Lopez Relano J, Diez-Rivero C, Reche P, Martínez-Naves E, Matveyeva E, Gómez del Moral M. 2013. Mesoporous silicon microparticles enhance MHC Class I cross-antigen presentation by human dendritic cells. Clin Develop Immunol. 2013:1–9.
  • Johansen P, Storni T, Rettig L, Qiu Z, Der-Sarkissian A, Smith K, Manolova V, Lang K, Senti G, Mullhaupt B, et al. 2008. Antigen kinetics determines immune reactivity. Proc Nat Acad Sci USA. 105:5189–5194.
  • Johnson M, Mendoza R, Raghavendra A, Podila R, Brown J. 2017. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Sci Rep. 7:43570.
  • Jonasson S, Gustafsson A, Koch B, Bucht A. 2013. Inhalation exposure of nano-scaled titanium dioxide (TiO2) particles alters the inflammatory responses in asthmatic mice. Inhal Toxicol. 25:179–191.
  • Jones S, Roberts R, Robbins G, Perry J, Kai M, Chen K, Bo T, Napier M, Ting J, DeSimone J, et al. 2013. Nanoparticle clearance is governed by TH1/TH2 immunity and strain background. J Clin Invest. 123:3061–3073.
  • Journeay W, Goldman R. 2014. Occupational handling of nickel nanoparticles: A case report. Am J Ind Med. 57:1073–1076.
  • Jung D, Che J, Lim K, Chun Y, Heo Y, Seok S. 2016. Discrimination of skin sensitizers from non-sensitizers by interleukin-1α and interleukin-6 production on cultured human keratinocytes. J Appl Toxicol. 36:1129–1136.
  • Kanerva L, Jolanki R, Estlander T, Alanko K, Savela A. 2000. Incidence rates of occupational allergic contact dermatitis caused by metals. Am J Contact Derm. 11:155–160.
  • Kang S, Ahn S, Lee J, Kim J, Choi M, Gujrati V, Kim H, Kim J, Shin E, Jon S. 2017. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J Control Rel. 256:56–67.
  • Kang K, Lim J. 2012. Induction of functional changes of dendritic cells by silica nanoparticles. Immune Netw. 12:104–112.
  • Kang H, Kim S, Lee K, Jin S, Kim S, Lee K, Jeon H, Song Y, Lee S, Seo J, et al. 2017. 5-nm Silver nanoparticles amplify clinical features of atopic dermatitis in mice by activating mast cells. Small. 13(9). DOI:10.1002/smll.201602363.
  • Kapilevich L, Zaitseva T, Nosarev A, D'Iakova E, Petlina Z, Ogorodova L, Ageev B, Magaeva A, Itin V, Terekhova O. 2012. Influence of nanosize particles of cobalt ferrite on contractile responses of smooth muscle segment of airways. Ross Fiziol Zh Im Sechenova. 98:228–235.
  • Karlberg A, Bergstrom M, Borje A, Luthman K, Nilsson J. 2008. Allergic contact dermatitis-formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol. 21:53–69.
  • Kauffman HF, Tamm M, Timmerman JAB, Borger P. 2006. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms. Clin Mol Allergy. 4:5.
  • Kaur R, Bramwell V, Kirby D, Perrie Y. 2012a. Manipulation of surface pegylation in combina-tion with reduced vesicle size of cationic liposomal adjuvants modifies their clearance kinetics from the injection site, and rate and type of T-cell response. J Control Rel. 164:331–337.
  • Kaur R, Bramwell V, Kirby D, Perrie Y. 2012b. Pegylation of DDA: TDB liposomal adjuvants reduces the vaccine depot effect and alters the TH1/TH2 immune responses. J Control Rel. 158:72–77.
  • Keene A, Tyner K. 2011. Analytical characterization of gold nanoparticle primary particles, aggregates, agglomerates, and agglomerated aggregates. J Nanopart Res. 13:3465–3481.
  • Khatami A, Nassiri‐Kashani M, Gorouhi F, Babakoohi S, Kazerouni‐Timsar A, Davari P, Sarraf‐Yazdy M, Dowlati Y, Firooz A. 2013. Allergic contact dermatitis to metal allergens in Iran. Int J Dermatol. 52:1513–1518.
  • Khatri M, Bello D, Pal A, Cohen J, Woskie S, Gassert T, Lan J, Gu A, Demokritou P, Gaines P. 2013. Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines. Part Fibre Toxicol. 10:42.
  • Kim S, Heo Y, Choi S, Kim Y, Kim M, Kim H, Jo E, Song C, Lee K. 2016. Safety evaluation of zinc oxide nanoparticles in terms of acute dermal toxicity, dermal irritation and corrosion, and skin sensitization. Mol Cell Toxicol. 12:93–99.
  • Kim T, Kim W, Mun J, Song M, Kim H, Kim B, Kim M, Ko H. 2015. Patch testing with dental screening series in oral disease. Ann Dermatol. 27:389–393.
  • Kim B, Lee P, Lee S, Park M, Jang A. 2017. Effect of TiO2 nanoparticles on inflammasome-mediated airway inflammation and responsiveness. Allergy Asthma Immunol Res. 9:257–264.
  • Kim C, Nguyen H, Ignacio R, Kim J, Cho H, Maeng E, Kim Y, Kim M, Park B, Kim S. 2014. Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. Int J Nanomed. 9:195–205.
  • Kim J, Song K, Sung J, Ryu H, Choi B, Cho H, Lee J, Yu I. 2013. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology. 7:953–960.
  • Kimber I, Cumberbatch M. 1992. Dendritic cells and cutaneous immune responses to chemical allergens. Toxicol Appl Pharmacol. 117:137–146.
  • Kinbara M, Nagai Y, Takano-Yamamoto T, Sugawara S, Endo Y. 2011. Cross-reactivity among some metals in a murine metal allergy model. Br J Dermatol. 165:1022–1029.
  • Kiss B, Bíró T, Czifra G, Tóth B, Kertész Z, Szikszai Z, Kiss Á, Juhász I, Zouboulis C, Hunyadi J. 2008. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol. 17:659–667.
  • Ko J, Lee H, Shin N, Seo Y, Kim S, Shin I, Kim J. 2018. Silicon dioxide nanoparticles enhance endotoxin-induced lung injury in mice. Molecules. 23:2247.
  • Koppes SA, Engebretsen KA, Agner T, Angelova-Fischer I, Berents T, Brandner J, Brans R, Clausen M-L, Hummler E, Jakasa I, et al. 2017. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermatitis. 77:1–16.
  • Korani M, Rezayat S, Gilani K, Bidgoli S, Adeli S. 2011. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine. 6:855.
  • Kraeling M, Topping V, Keltner Z, Belgrave K, Bailey K, Gao X, Yourick J. 2018. In vitro percutaneous penetration of silver nanoparticles in pig and human skin. Regul Toxicol Pharmacol. 95:314–322.
  • Kubo A, Ishizaki I, Kubo A, Kawasaki H, Nagao K, Ohashi Y, Amagai M. 2013. The stratum corneum comprises three layers with distinct metal-ion barrier properties. Sci Rep. 3:1731.
  • Kuempel E, Castranova V, Geraci C, Schulte P. 2012. Development of risk-based nanomaterial groups for occupational exposure control. J Nanopart Res. 14:1029.
  • Kurjane N, Zvagule T, Reste J, Martinsone Z, Pavlovska I, Martinsone I, Vanadzins I. 2017. The effect of different workplace nanoparticles on the immune systems of employees. J Nanopart Res. 19:320.
  • Kusaka Y, Iki M, Kumagai S, Goto S. 1996. Epidemiological study of hard metal asthma. Occup Environ Med. 53:188–193.
  • Labouta H, el-Khordagui L, Kraus T, Schneider M. 2011. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale. 3:4989–4999.
  • Lademann J, Knorr F, Richter H, Jung S, Meinke M, Rühl E, Alexiev U, Calderon M, Patzelt A. 2015. Hair follicles as target structure for nanoparticles. J Innov Optical Health Sci. 08:1530004.
  • Lademann J, Patzelt A, Richter H, Antoniou C, Sterry W, Knorr F. 2009. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt. 14:021014.
  • Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, Sterry W. 2006. Hair follicles - a long-term reservoir for drug delivery. Skin Pharmacol Physiol. 19:232–236.
  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W. 1999. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Physiol. 12:247–256.
  • Lambert AL, Dong W, Selgrade M, Gilmour M. 2000. Enhanced allergic sensitization by residual oil fly ash particles is mediated by soluble metal constituents. Toxicol Appl Pharmacol. 165:84–93.
  • Lambrecht B, Hammad H. 2012. The airway epithelium in asthma. Nat Med. 18:684.
  • Lansdown A. 1995. Physiological and toxicological changes in the skin resulting from the action and interaction of metal ions. Crit Rev Toxicol. 25:397–462.
  • Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G. 2009. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology. 255:33–37.
  • Larese Filon F, Bello D, Cherrie J, Sleeuwenhoek A, Spaan S, Brouwer D. 2016. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption. Int J Hyg Environ Health. 219:536–544.
  • Larese Filon F, Crosera M, Timeus E, Adami G, Bovenzi M, Ponti J, Maina G. 2013. Human skin penetration of cobalt nanoparticles through intact and damaged skin. Toxicol In Vitro. 27:121–127.
  • Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M. 2015. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul Toxicol Pharmacol. 72:310–322.
  • Larsen S, Roursgaard M, Jensen K, Nielsen G. 2010. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol. 106:114–117.
  • Laudańska H, Lemancewicz A, Kretowska M, Reduta T, Laudański T. 2002. Permeability of human skin to selected anions and cations-in vitro studies. Res Commun Mol Pathol Pharmacol. 112:16–26.
  • Lawrence D, McCabe M. 2002. Immunomodulation by metals. Int Immunopharmacol. 2:293–302.
  • Lee O, Jeong S, Shin W, Lee G, Oh C, Son S. 2013. Influence of surface charge of gold nanorods on skin penetration. Skin Res Technol. 19:e390–e396.
  • Lee S, Pie J, Kim Y, Lee H, Son S, Kim M. 2012. Effects of zinc oxide nanoparticles on gene expression profile in human keratinocytes. Mol Cell Toxicol. 8:113–118.
  • Lee C, Syu S, Chen Y, Hussain S, Aleksandrovich Onischuk A, Chen W, Steven Huang G. 2014. Gold nanoparticles regulate the blimp1/pax5 pathway and enhance antibody secretion in B-cells. Nanotechnology. 25:125103.
  • Lee S, Yun H, Kim S. 2011. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials. 32:9434–9443.
  • Lee S, Hwang S, Jeong J, Han Y, Kim S, Lee D, Lee H, Chung S, Jeong J, Roh C. 2016. Nickel oxide nanoparticles can recruit eosinophils in the lungs of rats by the direct release of intracellular eotaxin. Particle Fibre Toxicol. 13.
  • Leite-Silva VR, Le Lamer M, Sanchez WY, Liu DC, Sanchez WH, Morrow I, Martin D, Silva HDT, Prow TW, Grice JE, et al. 2013. The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur J Pharm Biopharm. 84:297–308.
  • Leite-Silva VR, Sanchez WY, Studier H, Liu DC, Mohammed YH, Holmes AM, Ryan EM, Haridass IN, Chandrasekaran NC, Becker W, et al. 2016. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment. Eur J Pharm Biopharm. 104:140–147.
  • Li H, Li Y, Jiao J, Hu H. 2011. α-Alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent anti-tumor response. Nat Nanotechnol. 6:645.
  • Li N, Wang M, Bramble L, Schmitz D, Schauer J, Sioutas C, Harkema J, Nel A. 2009. The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. Environ Health Perspect. 117:1116–1123.
  • Li Y, Shi Z, Radauer-Preiml I, Andosch A, Casals E, Luetz-Meindl U, Cobaleda M, Lin Z, Jaberi-Douraki M, Italiani P, et al. 2017. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology. 11:1157–1175.
  • Liao H, Chung Y, Lai C, Lin M, Liou S. 2014. Sneezing and allergic dermatitis were increased in engineered nanomaterial-handling workers. Ind Health. 52:199–215.
  • Lin L, Grice J, Butler M, Zvyagin A, Becker W, Robertson T, Soyer H, Roberts M, Prow T. 2011. Time-correlated single photon counting for simultaneous monitoring of ZnO nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharm Res. 28:2920–2930.
  • Lin M, Zhan Y, Villadangos J, Lew A. 2008. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol Cell Biol. 86:353–362.
  • Lin J, Zhang H, Chen Z, Zheng Y. 2010. Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 4:5421–5429.
  • Linauskiene K, Malinauskiene L, Blažiene A. 2017. Metals are important contact sensitizers: An experience from Lithuania. BioMed Res Intl. 2017:3964045.
  • Linde S, Franken A, du Plessis J. 2017. Occupational respiratory exposure to platinum group metals: A review and recommendations. Chem Res Toxicol. 30:1778–1790.
  • Liptrott N, Kendall E, Nieves D, Farrell J, Rannard S, Fernig D, Owen A. 2014. Partial mitigation of gold nanoparticle interactions with human lymphocytes by surface functionalization with a ‘mixed matrix'. Nanomedicine. 9:2467–2479.
  • Lisby S, Müller K, Jongeneel C, Saurat J, Hauser C. 1995. Nickel and skin irritants up-regulate TNFα mRNA in keratinocytes by different but potentially synergistic mechanisms. Int Immunol. 7:343–352.
  • Liu Y, Huang J, Wang D, Wang J. 2013. Identification of DMSA-coated Fe3O4 nanoparticles induced-apoptosis response genes in human monocytes by cDNA microarrays. Adv Mat Res. 749:377–383.
  • Liu Z, Li W, Wang F, Sun C, Wang L, Wang J, Sun F. 2012. Enhancement of lipopolysaccharide-induced nitric oxide and IL-6 production by PEGylated gold nanoparticles in RAW264.7 cells. Nanoscale. 4:7135–7142.
  • Liu H, Yang D, Yang H, Zhang H, Zhang W, Fang Y, Lin Z, Tian L, Lin B, Yan J. 2013. Comparative study of respiratory tract immune toxicity induced by three sterilization nanoparticles: Silver, zinc oxide and titanium dioxide. J Hazard Mater. 248:478–486.
  • Liu R, Yin L, Pu Y, Li Y, Zhang X, Liang G, Li X, Zhang J, Li Y, Zhang X. 2010. The immune toxicity of titanium dioxide on primary pulmonary alveolar macrophages relies on their surface area and crystal structure. J Nanosci Nanotechnol. 10:8491–8499.
  • Liu M, Zhang J, Shan W, Huang Y. 2015. Developments of mucus penetrating nanoparticles. Asian J Pharm Sci. 10:275–282.
  • Liu Y, Jiao F, Qiu Y, Li W, Lao F, Zhou G, Sun B, Xing G, Dong J, Zhao Y, et al. 2009. The effect of Gd@C82(OH)22 nanoparticles on the release of TH1/TH2 cytokines and induction of TNFα-mediated cellular immunity. Biomaterials. 30:3934–3945.
  • Liu S, Meng X, Perez-Aguilar J, Zhou R. 2016. An in silico study of TiO2 nanoparticles interaction with 20 standard amino acids in aqueous solution. Sci Rep. 6:37761.
  • Lu M, Suh K, Lee H, Cohen M, Rieves D, Pazdur R. 2010. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 85:315–319.
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson K. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270.
  • Luo Y, Chang L, Lin P. 2015. Metal-based nanoparticles and the immune system: Activation, inflammation, and potential applications. BioMed Res Int. 2015:143720.
  • Luster A, Tager A. 2004. T-Cell trafficking in asthma: Lipid mediators grease the way. Nat Rev Immunol. 4:711–724.
  • Malo J, Chan-Yeung M, Bernstein D, editors. 2013. Asthma in the Workplace. Boca Raton, FL: CRC Press.
  • Ma J, Mercer R, Barger M, Schwegler-Berry D, Scabilloni J, Ma J, Castranova V. 2012. Induc-tion of pulmonary fibrosis by CeO nanoparticles. Toxicol Appl Pharmacol. 262:255–264.
  • Ma H, Wallis L, Diamond S, Li S, Canas-Carrell J, Parra A. 2014. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Environ Pollut. 193:165–172.
  • Mahe B, Vogt A, Liard C, Duffy D, Abadie V, Bonduelle O, Boissonnas A, Sterry W, Verrier B, Blume-Peytavi U, et al. 2009. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol. 129:1156–1164.
  • Mahler V, Geier J, Schnuch A. 2014. Current trends in patch testing - new data from the German Contact Dermatitis Research Group (DKG) and the Information Network of Departments of Dermatology (IVDK). J Dtsch Dermatol Ges. 12:583–592.
  • Mahmoud N, Alkilany AM, Dietrich D, Karst U, Al-Bakri A, Khalil E. 2017. Preferential accumulation of gold nanorods into human skin hair follicles: Effect of nanoparticle surface chemistry. J Coll Interf Sci. 503:95–102.
  • Mahmoud N, Harfouche M, Alkilany A, Al-Bakri A, El-Qirem R, Shraim S, Khalil EA. 2018. Synchrotron-based X-ray fluorescence study of gold nanorods and skin elements distribution into excised human skin layers. Colloids Surf B Biointerf. 165:118–126.
  • Malhotra R, Haurum J, Thiel S, Jensenius J, Sim R. 1993. Pollen grains bind to lung alveolar Type II cells (A549) via lung surfactant protein A (SP-A). Biosci Rep. 13:79–90.
  • Malinauskiene L, Isaksson M, Bruze M. 2015. Patch testing with the Swedish Baseline Series in two countries. J Clin Exp Dermatol Res. 6:5.
  • Malo J, Cartier A, Doepner M, Nieboer E, Evans S, Dolovich J. 1982. Occupational asthma caused by nickel sulfate. J Allergy Clin Immunol. 69:55–59.
  • Mandervelt C, Clottens F, Demedts M, Nemery B. 1997. Assessment of the sensitization potential of five metal salts in the murine local lymph node assay. Toxicology. 120:65–73.
  • Manke A, Wang L, Rojanasakul Y. 2013. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int. 2013:942916.
  • Mano S, Kanehira K, Taniguchi A. 2013. Comparison of cellular uptake and inflammatory response via toll-like receptor 4 to lipopolysaccharide and titanium dioxide. Nanoparticles Int J Mol Sci. 14:13154–13170.
  • Maquieira Á, Brun EM, Garcés-García M, Puchades R. 2012. Aluminum oxide nanoparticles as carriers and adjuvants for eliciting antibodies from non-immunogenic haptens. Anal Chem. 84:9340–9348.
  • Marquis B, Liu Z, Braun K, Haynes C. 2011. Investigation of noble metal nanoparticle ζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry. Analyst. 136:3478–3486.
  • Marquis B, Maurer-Jones M, Braun K, Haynes C. 2009. Amperometric assessment of functional changes in nanoparticle-exposed immune cells: Varying Au nanoparticle exposure time and concentration. Analyst. 134:2293–2300.
  • Martorano L, Stork C, Li Y. 2010. UV irradiation‐induced zinc dissociation from commercial zinc oxide sunscreen and its action in human epidermal keratinocytes. J Cosmetic Dermatol. 9:276–286.
  • Marzaioli V, Aguilar-Pimentel J, Weichenmeier I, Luxenhofer G, Wiemann M, Landsiedel R, Wohlleben W, Eiden S, Mempel M, Behrendt H. 2014. Surface modifications of silica nanoparticles are crucial for their inert versus pro-inflammatory and immunomodulatory properties. Int J Nanomed. 9:2815–2832.
  • Matsumura M, Nagata M, Nakamura K, Kawai M, Baba T, Yamaki K, Yoshino S. 2010. Adjuvant effect of zinc oxide on TH2 but not TH1 immune responses in mice. Immunopharmacol Immunotoxicol. 32:56–62.
  • Matsuo K, Hirobe S, Okada N, Nakagawa S. 2016. Analysis of skin permeability and toxicological properties of amorphous silica particles. Biol Pharm Bull. 39:1201–1205.
  • Mattila L, Kilpelainen M, Terho E, Koskenvuo M, Helenius H, Kalimo K. 2001. Prevalence of nickel allergy among Finnish university students in 1995. Contact Derm. 44:218–223.
  • Matuszak J, Dörfler P, Zaloga J, Unterweger H, Lyer S, Dietel B, Alexiou C, Cicha I. 2015. Shell matters: Magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function. Clin Hemorheol Microcirc. 61:259–277.
  • Maurer-Jones M, Lin Y, Haynes C. 2010. Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano. 4:3363–3373.
  • Mauro M, Crosera M, Bianco C, Adami G, Montini T, Fornasiero P, Jaganjac M, Bovenzi M, Filon F. 2015. Permeation of platinum and rhodium nanoparticles through intact and damaged human skin. J Nanopart Res 17:253.
  • McConnachie L, White C, Botta D, Zadworny M, Cox D, Beyer R, Hu X, Eaton D, Gao X, Kavanagh T. 2013. Heme oxygenase expression as a biomarker of exposure to amphiphilic polymer-coated CdSe/ZnS quantum dots. Nanotoxicology. 7:181–191.
  • McKee A, Mack D, Crawford F, Fontenot A. 2015. MyD88 dependence of beryllium-induced dendritic cell trafficking and CD4+ T-cell priming. Mucosal Immunol. 8:1237–1247.
  • Meldrum K, Robertson S, Römer I, Marczylo T, Dean L, Rogers A, Gant T, Smith R, Tetley T, Leonard M. 2018. Cerium dioxide nanoparticles exacerbate house dust mite-induced Type II airway inflammation. Particle Fibre Toxicol. 15:24.
  • Mercer RR, Scabilloni JF, Wang L, Battelli LA, Antonini JM, Roberts JR, Qian Y, Sisler JD, Castranova V, Porter DW, et al. 2018. The fate of inhaled nanoparticles: Detection and measurement by enhanced dark-field microscopy. Toxicol Pathol. 46:28–46.
  • Miquel‐Jeanjean C, Crépel F, Raufast V, Payre B, Datas L, Bessou‐Touya S, Duplan H. 2012. Penetration study of formulated nanosized titanium dioxide in models of damaged and sun-irradiated skins. Photochem Photobiol. 88:1513–1521.
  • Mishra V, Baranwal V, Mishra R, Sharma S, Paul B, Pandey A. 2016. Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-κB pathway in murine model of asthma. Biomaterials. 92:90–102.
  • Miyazawa M, Takashima A. 2012. Development and validation of a new in vitro assay designed to measure contact allergen-triggered oxidative stress in dendritic cells. J Dermatol Sci. 68:73–81.
  • Mizuashi M, Ohtani T, Nakagawa S, Aiba S. 2005. Redox imbalance induced by contact sensitizers triggers the maturation of dendritic cells. J Invest Dermatol. 124:579–586.
  • Moghimi S, Parhamifar L, Ahmadvand D, Wibroe P, Andresen T, Farhangrazi Z, Hunter A. 2012. Particulate systems for targeting of macrophages: Basic and therapeutic concepts. J Innate Immun. 4:509–528.
  • Mohamed B, Verma N, Prina-Mello A, Williams Y, Davies AM, Bakos G, Tormey L, Edwards C, Hanrahan J, Salvati A, et al. 2011. Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as early indicator of cytotoxicity. J Nanobiotechnol. 9:29.
  • Mohammadinejad R, Moosavi M, Tavakol S, Vardar D, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A, Klionsky D. 2019. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy. 15:4–33.
  • Mohanan P, Geetha C, Syama S, Varma H. 2014. Interfacing of dextran coated ferrite nano-materials with cellular system and delayed hypersensitivity on guinea pigs. Coll Surf B 116:633–642.
  • Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, Saad M, Yu J. 2009. Inflammatory mechanisms in the lung. J Inflamm Res. 2:1–11.
  • Monprasit P, Lawanprasert S, Maniratanachote R. 2018. Effects of silver, silver-copper and silver-tin nanoparticles in THP-1 cells. Thai J Pharm Sci. 42:59–63.
  • Monteiro-Riviere N, Wiench K, Landsiedel R, Schulte S, Inman A, Riviere J. 2011. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanopar-ticles in UVB-sunburned skin: An in vitro and in vivo study. Toxicol Sci. 123:264–280.
  • Moron G, Dadaglio G, Leclerc C. 2004. New tools for antigen delivery to the MHC Class I pathway. Trends Immunol. 25:92–97.
  • Mortensen L, Faulknor R, Ravichandran S, Zheng H, DeLouise L. 2015. UVB dependence of quantum dot reactive oxygen species generation in common skin cell models. J Biomed Nanotechnol. 11:1644–1652.
  • Mortensen L, Jatana S, Gelein R, de Benedetto A, de Mesy Bentley K, Beck L, Elder A, DeLouise L. 2013. Quantification of quantum dot murine skin penetration with UVR barrier impairment. Nanotoxicology. 7:1386–1398.
  • Mortensen LJ, Oberdörster G, Pentland AP, Delouise LA. 2008. In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR. Nano Lett. 8:2779–2787.
  • Mou Y, Xing Y, Ren H, Cui Z, Zhang Y, Yu G, Urba WJ, Hu Q, Hu H. 2017. Effect of super-paramagnetic iron oxide nanoparticle surface charge on antigen cross-presentation. Nanoscale Res Lett. 12:52.
  • Moulon C, Vollmer J, Weltzien H. 1995. Characterization of processing requirements and metal cross-reactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol. 25:3308–3315.
  • Moyano D, Goldsmith M, Solfiell D, Landesman-Milo D, Miranda O, Peer D, Rotello V. 2012. Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc. 134:3965–3967.
  • Muller J, Prozeller D, Ghazaryan A, Kokkinopoulou M, Mailander V, Morsbach S, Landfester K. 2018. Beyond the protein corona - lipids matter for biological response of nanocarriers. Acta Biomater. 71:420–431.
  • Murdoch RD, Pepys J, Hughes E. 1986. IgE antibody responses to platinum group metals: A large scale refinery survey. Br J Ind Med. 43:37–43.
  • Murgia X, Pawelzyk P, Schaefer U, Wagner C, Willenbacher N, Lehr C. 2016. Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Bio-macromolecules. 17:1536–1542.
  • Murray AR, Kisin E, Inman A, Young S-H, Muhammed M, Burks T, Uheida A, Tkach A, Waltz M, Castranova V, et al. 2013. Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro. Cell Biochem Biophys. 67:461–476.
  • Musk A, Tees J. 1982. Asthma caused by occupational exposure to vanadium compounds. Med J Aust. 1:183–184.
  • Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Arimori A, Isobe M, Tochigi S, Kondoh S, Hirai T, Akase T, et al. 2010. Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells. Pharmazie. 65:199–201.
  • Naess EM, Hofgaard A, Skaug V, Gulbrandsen M, Danielsen TE, Grahnstedt S, Skogstad A, Holm J–ø. 2016. Titanium dioxide nanoparticles in sunscreen penetrate the skin into viable layers of the epidermis: A clinical approach. Photodermatol Photoimmunol Photomed. 32:48–51.
  • Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, Kitashima DY, Ueha S, Horiuchi K, Tanizaki H, Kabashima K, et al. 2012. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol. 13:744–752.
  • Naim J, van Oss C, Wu W, Giese R, Nickerson P. 1997. Mechanisms of adjuvancy: I-Metal oxides as adjuvants. Vaccine 15:1183–1193.
  • Nakahara T, Moroi Y, Uchi H, Furue M. 2006. Differential role of MAPK signaling in human dendritic cell maturation and TH1/TH2 engagement. J Dermatol Sci. 42:1–11.
  • Nanomaterials Future Markets. 2015. Metal & Metal Oxide: Forecast from 2010 to 2025. Future Markets, Inc.
  • Napierska D, Rabolli V, Thomassen LCJ, Dinsdale D, Princen C, Gonzalez L, Poels KLC, Kirsch-Volders M, Lison D, Martens JA, et al. 2012. Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions. Chem Res Toxicol. 25:828–837.
  • National Institute for Occupational Safety and Health (NIOSH). 2011. Occupational Exposure to Titanium Dioxide. Atlanta, GA: NIOSH.
  • Natsch A, Emter R. 2008. Skin sensitizers induce antioxidant response element dependent genes: Application to the in vitro testing of the sensitization potential of chemicals. Toxicol Sci. 102:110–119.
  • Natsch A, Emter R. 2016. Nrf2 activation as a key event triggered by skin sensitisers: The development of the stable KeratinoSens reporter gene assay. Altern Lab Anim. 44:443–451.
  • Neagu M, Piperigkou Z, Karamanou K, Engin A, Docea A, Constantin C, Negrei C, Nikitovic D, Tsatsakis A. 2017. Protein bio-corona: Critical issue in immune nanotoxicology. Arch Toxicol. 91:1031–1048.
  • Neto L, Zufelato N, de Sousa-Junior A, Trentini M, da Costa A, Bakuzis A, Kipnis A, Junqueira-Kipnis A. 2018. Specific T-cell induction using iron oxide based nanoparticles as subunit vaccine adjuvant. Human Vaccin Immunother. 18:1–16.
  • Neubauer N, Palomaeki J, Karisola P, Alenius H, Kasper G. 2015. Size-dependent ROS produc-tion by palladium and nickel nanoparticles in cellular and acellular environments. An indication for the catalytic nature of their interactions. Nanotoxicology. 9:1059–1066.
  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS. 2007. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol. 37:251–277.
  • Nonaka H, Nakada T, Iijima M, Maibach H. 2011. Metal patch test results from 1990-2009. J Dermatol. 38:267–271.
  • Nukada Y, Ashikaga T, Miyazawa M, Hirota M, Sakaguchi H, Sasa H, Nishiyama N. 2012. Prediction of skin sensitization potency of chemicals by human Cell Line Activation Test (h-CLAT) and an attempt at classifying skin sensitization potency. Toxicol In Vitro. 26:1150–1160.
  • Nygaard U, Samuelsen M, Aase A, Løvik M. 2004. The capacity of particles to increase allergic sensitization is predicted by particle number and surface area, not by particle mass. Toxicol Sci. 82:515–524.
  • Oberdorster G, Ferin J, Morrow P. 1992. Volumetric loading of alveolar macrophages (AM): A possible basis for diminished AM-mediated particle clearance. Exp Lung Res. 18:87–104.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 113:823–839.
  • [OECD] (Organization for Economic Cooperation and Development). 2014. Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins. Part 1: Scientific evidence. OECD Environment, Health and Safety Publications Series on Testing and Assessment 168 (2012):1–59.
  • Oh W, Kim S, Choi M, Kim C, Jeong Y, Cho B, Hahn J, Jang J. 2010. Cellular uptake, cyto-toxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. ACS Nano. 4:5301–5313.
  • Omlor AJ, Le DD, Schlicker J, Hannig M, Ewen R, Heck S, Herr C, Kraegeloh A, Hein C, Kautenburger R, et al. 2017. Local effects on airway inflammation and systemic uptake of 5-nm PEGylated and citrated gold nanoparticles in asthmatic mice. Small. 13:1603070.
  • Orlowski P, Tomaszewska E, Ranoszek-Soliwoda K, Gniadek M, Labedz O, Malewski T, Nowakowska J, Chodaczek G, Celichowski G, Grobelny J, et al. 2018. Tannic acid-modified silver and gold nanoparticles as novel stimulators of dendritic cells activation. Front Immunol. 9:1115.
  • Ortega VA, Ede JD, Boyle D, Stafford JL, Goss GG. 2015. Polymer-coated metal-oxide nanoparticles inhibit IgE receptor binding, cellular signaling, and degranulation in a mast cell-like cell line. Advanced Sci. 2:1500104.
  • Ortega R, Bresson C, Darolles C, Gautier C, Roudeau S, Perrin L, Janin M, Floriani M, Aloin V, Carmona A, et al. 2014. Low-solubility particles and a Trojanhorse-type mechanism of toxicity: The case of cobalt oxide on human lung cells. Particle Fibre Toxicol. 11:14.
  • Osmond-McLeod M, Oytam Y, Kirby J, Gomez-Fernandez L, Baxter B, McCall M. 2014. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology. 8:72–84.
  • Ostrowski A, Nordmeyer D, Mundhenk L, Fluhr J, Lademann J, Graf C, Rühl E, Gruber A. 2014. AHAPS-functionalized silica nanoparticles do not modulate allergic contact dermatitis in mice. Nanoscale Res Lett. 9:524.
  • Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. 2004. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 122:14–19.
  • Pal A, Alam S, Chauhan L, Saxena P, Kumar M, Ansari G, Singh D, Ansari K. 2016a. UVB exposure enhanced the dermal penetration of zinc oxide nanoparticles and induced inflammatory responses through oxidative stress mediated by MAPKs and NF-κB signaling in SKH-1 hairless mouse skin. Toxicol Res. 5:1066–1077.
  • Pal A, Alam S, Mittal S, Arjaria N, Shankar J, Kumar M, Singh D, Pandey A, Ansari K. 2016b. UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin. Mutat Res. 807:15–24.
  • Palomäki J, Karisola P, Pylkkänen L, Savolainen K, Alenius H. 2010. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen-presenting cells. Toxicology. 267:125–131.
  • Pannerselvam B, Dharmalingam Jothinathan M, Rajenderan M, Perumal P, Pudupalayam Thangavelu K, Kim H, Singh V, Rangarajulu S. 2017. An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phytosynthesized silver nanoparticles in male Wistar albino rats. Eur J Pharm Sci. 100:187–196.
  • Park E, Bae E, Yi J, Kim Y, Choi K, Lee S, Yoon J, Lee B, Park K. 2010a. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol. 30:162–168.
  • Park Y, Jeong S, Yi S, Choi B, Kim Y, Kim I, Kim M, Son S. 2011. Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization. Toxicol In Vitro. 25:1863–1869.
  • Park E, Kim H, Kim Y, Park K. 2010b. Intratracheal instillation of platinum nanoparticles may induce inflammatory responses in mice. Arch Pharm Res. 33:727–735.
  • Park E, Kim H, Kim Y, Yi J, Choi K, Park K. 2010c. Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology. 275:65–71.
  • Park S, Lee Y, Jung M, Kim K, Chung N, Ahn E, Lim Y, Lee K. 2007. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol. 19:59–65.
  • Park J, Lee I, Shin N, Jeon C, Kwon O, Ko J, Kim J, Oh S, Shin I, Ahn K. 2016. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology. 10:445–452.
  • Park E, Yi J, Chung K, Ryu D, Choi J, Park K. 2008. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett. 180:222–229.
  • Park E-J, Park Y-K, Park K-S. 2009. Acute toxicity and tissue distribution of cerium oxide nanoparticles by a single oral administration in rats. Toxicological Research. 25(2):79–84.
  • Park E, Yoon J, Choi K, Yi J, Park K. 2009. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology. 260:37–46.
  • Park H, Kim K, Jang S, Park J, Cha H, Lee J, Kim J, Kim S, Lee C, Kim J. 2010. Attenuation of allergic airway inflammation and hyper-responsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomed. 5:505–515.
  • Park HJ, Sohn J-H, Kim Y-J, Park YH, Han H, Park KH, Lee K, Choi H, Um K, Choi I-H, et al. 2015. Acute exposure to silica nanoparticles aggravate airway inflammation: Different effects according to surface characteristics. Exp Mol Med 47:e173.
  • Patzelt A, Richter H, Knorr F, Schäfer U, Lehr C, Dähne L, Sterry W, Lademann J. 2011. Selective follicular targeting by modification of the particle sizes. J Control Rel. 150:45–48.
  • Pawankar R. 2014. Allergic diseases and asthma: A global public health concern and a call to action. World Allergy Organiz J. 7:1–12.
  • Pawelec G, Goldeck D, Derhovanessian E. 2014. Inflammation, ageing and chronic disease. Curr Opin Immunol. 29:23–28.
  • Peira E, Turci F, Corazzari I, Chirio D, Battaglia L, Fubini B, Gallarate M. 2014. The influence of surface charge and photo-reactivity on skin-permeation enhancer property of nano-TiO2 in ex vivo pig skin model under indoor light. Int J Pharm. 467:90–99.
  • Peiser M, Tralau T, Heidler J, Api A, Arts J, Basketter D, English J, Diepgen T, Fuhlbrigge R, Gaspari A, et al. 2012. Allergic contact dermatitis: Epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell Mol Life Sci. 69:763–781.
  • Pepin E, Goutet M, Ban M. 2007. Murine bone marrow-derived dendritic cells as a potential in vitro model for predictive identification of chemical sensitizers. Toxicol Lett. 175:89–101.
  • Pepys J, Parish W, Cromwell O, Hughes E. 1979. Specific IgE and IgG antibodies to platinum salts in sensitized workers. Monogr Allergy. 14:142.
  • Petersen E, Reipa V, Watson S, Stanley D, Rabb S, Nelson B. 2014. DNA damaging potential of photoactivated P25 titanium dioxide nanoparticles. Chem Res Toxicol. 27:1877–1884.
  • Petrarca C, Clemente E, di Giampaolo L, Mariani-Costantini R, Leopold K, Schindl R, Lotti L, Mangifesta R, Sabbioni E, Niu Q, et al. 2014. Palladium nanoparticles induce disturbances in cell cycle entry and progression of peripheral blood mononuclear cells: Paramount role of ions. J Immunol Res. 2014:1.
  • Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E, di Giampaolo L, Dadorante V, Schiavone C, Boscolo P, et al. 2006. Cobalt nanoparticles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol. 19:11–14.
  • Petsonk E. 2002. Work-related asthma and implications for the general public. Environ Health Perspect. 110:569–572.
  • Pettibone J, Adamcakova-Dodd A, Thorne P, O'Shaughnessy P, Weydert J, Grassian V. 2008. Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles. Nanotoxicology. 2:189–204.
  • Pflücker F, Hohenberg H, Hölzle E, Will T, Pfeiffer S, Wepf R, Diembeck W, Wenck H, Gers‐Barlag H. 1999. The outermost stratum corneum layer is an effective barrier against dermal uptake of topically applied micronized titanium dioxide. Int J Cosmetic Sci. 21:399–411.
  • Piasecka-Zelga J, Zelga P, Górnicz M, Strzelczyk P, Sójka-Ledakowicz J. 2015. Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers. J Occup Health. 57:275–284.
  • Pistoor F, Kapsenberg M, Bos J, Meinardi M, von Blomberg M, Scheper R. 1995. Cross-reactivity of human nickel-reactive T-lymphocyte clones with copper and palladium. J Invest Dermatol. 105:92–95.
  • Pluut O, Bianco C, Jakasa I, Visser M, Krystek P, Larese-Filon F, Rustemeyer T, Kezic S. 2015. Percutaneous penetration of silver from a silver containing garment in healthy volunteers and patients with atopic dermatitis. Toxicol Lett. 235:116–122.
  • Poh T, Ali N, Mac Aogáin M, Kathawala M, Setyawati M, Ng K, Chotirmall S. 2018. Inhaled nanomaterials and the respiratory microbiome: Clinical, immunological and toxicological perspectives. Part Fibre Toxicol. 15:46.
  • Possa S, Leick E, Prado C, Martins M, Tibério I. 2013. Eosinophilic inflammation in allergic asthma. Front Pharmacol. 4:46.
  • Powles LM, Wilson K, Xiang SD, Selomulya C, Plebanski M. 2017. New strategies in vaccine design for induction of CD8 T-cell responses using biodegradable iron oxide nanoparticles. J Immunol. 198:79.23.
  • Prach M, Stone V, Proudfoot L. 2013. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status. Toxicol Appl Pharmacol. 266:19–26.
  • Prow TW, Monteiro-Riviere NA, Inman AO, Grice JE, Chen X, Zhao X, Sanchez WH, Gierden A, Kendall MAF, Zvyagin AV, et al. 2012. Quantum dot penetration into viable human skin. Nanotoxicology. 6:173–185.
  • Pusic K, Aguilar Z, McLoughlin J, Kobuch S, Xu H, Tsang M, Wang A, Hui G. 2013. Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine. Faseb J. 27:1153–1166.
  • Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, Lebrun A, De Gussem V, Couillin I, Ryffel B, et al. 2014. The alarmin IL-1α is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part Fibre Toxicol. 11:69.
  • Rachmawati D, Bontkes H, Verstege M, Muris J, von Blomberg B, Scheper R, van Hoogstraten I. 2013. Transition metal sensing by toll-like receptor-4: Next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Derm. 68:331–338.
  • Rachmawati D, Buskermolen J, Scheper R, Gibbs S, von Blomberg B, van Hoogstraten I. 2015. Dental metal-induced innate reactivity in keratinocytes. Toxicol In Vitro. 30:325–330.
  • Radauer-Preiml I, Andosch A, Hawranek T, Luetz-Meindl U, Wiederstein M, Horejs-Hoeck J, Himly M, Boyles M, Duschl A. 2016. Nanoparticle-allergen interactions mediate human allergic responses: Protein corona characterization and cellular responses. Particle Fibre Toxicol. 13:3.
  • Raju G, Katiyar N, Vadukumpully S, Shankarappa S. 2018. Penetration of gold nanoparticles across the stratum corneum layer of thick-Skin. J Dermatol Sci. 89:146–154.
  • Ramirez T, Mehling A, Kolle S, Wruck C, Teubner W, Eltze T, Aumann A, Urbisch D, van Ravenzwaay B, Landsiedel R. 2014. LuSens: A keratinocyte based ARE reporter gene assay for use in integrated testing strategies for skin sensitization hazard identification. Toxicol In Vitro. 28:1482–1497.
  • Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, Kembuan C, Blume-Peytavi U, Rühl E, Lademann J, et al. 2012. Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano. 6:6829–6842.
  • Rancan F, Nazemi B, Rautenberg S, Ryll M, Hadam S, Gao Q, Hackbarth S, Haag SF, Graf C, Rühl E, et al. 2014. Ultraviolet radiation- and nanoparticle-induced intracellular free radical gene-ration measured in human keratinocytes by electron paramagnetic resonance spectroscopy. Skin Res Technol. 20:182–193.
  • Rattis F, Concha M, Dalbiez-Gauthier C, Schmitt D, Péguet-Navarro J, Courtellemont P. 1998. Effects of ultraviolet B radiation on human Langerhans cells: Functional alteration of CD86 upregulation and induction of apoptotic cell death. J Invest Dermatol. 111:373–379.
  • Ravichandran S, Mortensen L, Delouise L. 2011. Quantification of human skin barrier function and susceptibility to quantum dot skin penetration. Nanotoxicology. 5:675–686.
  • Ravindran A, Dhas S, Chandrasekaran N, Mukherjee A. 2013. Differential interaction of silver nanoparticles with cysteine. J Exp Nanosci. 8:589–595.
  • Reale M, Vianale G, Lotti L, Mariani-Costantini R, Perconti S, Cristaudo A, Leopold K, Anto-nucci A, di Giampaolo L, Iavicoli I, et al. 2011. Effects of Palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of palladium-sensitized women. J Occup Environ Med. 53:1054–1060.
  • Rice R, Vidrio E, Kumfer B, Qin Q, Willits N, Kennedy I, Anastasio C. 2009. Generation of oxidant response to copper and iron nanoparticles and salts: Stimulation by ascorbate. Chem Biol Interact. 181:359–365.
  • Roco M. 2011. The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years. J Nanopart Res. 13:427–445.
  • Romoser A, Chen P, Berg J, Seabury C, Ivanov I, Criscitiello M, Sayes CM. 2011. Quantum dots trigger immunomodulation of the NFκB pathway in human skin cells. Mol Immunol. 48:1349–1359.
  • Rossi E, Pylkkanen L, Koivisto AJ, Nykasenoja H, Wolff H, Savolainen K, Alenius H. 2010. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Particle Fibre Toxicol. 7:35.
  • Roy R, Kumar D, Sharma A, Gupta P, Chaudhari B, Tripathi A, Das M, Dwivedi P. 2014a. ZnO nanoparticles induced adjuvant effect via toll-like receptors and Src signaling in Balb/c mice. Toxicol Lett. 230:421–433.
  • Roy R, Kumar S, Verma AK, Sharma A, Chaudhari B, Tripathi A, Das M, Dwivedi P. 2014b. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a TH2 response in Balb/c mice. Int Immunol. 26:159–172.
  • Ruge C, Kirch J, Canadas O, Schneider M, Perez-Gil J, Schaefer U, Casals C, Lehr C. 2011. Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine. 7:690–693.
  • Rustemeyer T, van Hoogstraten I, von Blomberg B, Scheper R. 2006. Mechanisms in allergic contact dermatitis. In: Rustemeyer T, Elsner P, John S, Maibach H, editors. Kanerva’s Occupational Dermatology. Chapter 2. London: Springer; p. 11–43.
  • Ryman-Rasmussen J, Riviere J, Monteiro-Riviere N. 2006. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 91:159–165.
  • Ryman-Rasmussen J, Riviere J, Monteiro-Riviere N. 2007. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol. 127:143–153.
  • Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D, Siitonen PH, Cozart CR, Patri AK, McNeil SE, et al. 2010. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol Sci. 115:156–166.
  • Sager T, Wolfarth M, Keane M, Porter D, Castranova V, Holian A. 2016. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung. Nanotoxicology. 10:151–161.
  • Samberg M, Oldenburg S, Monteiro-Riviere N. 2010. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect. 118:407–413.
  • Samet J, Cheng P. 1994. Role of airway mucus in pulmonary toxicology. Environ Health Perspect. 102:89–103.
  • Sandberg W, Låg M, Holme J, Friede B, Gualtieri M, Kruszewski M, Schwarze P, Skuland T, Refsnes M. 2012. Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages. Particle Fibre Toxicol. 9:1.
  • Sandby-Moller J, Poulsen T, Wulf H. 2003. Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol. 83:410–413.
  • Sasseville D. 2008. Occupational contact dermatitis. Allergy Asthma Clin Immunol. 4:59–65.
  • Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura I, Lennon-Dumenil A, Seabra M, Raposo G, Amigorena S. 2006. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell. 126:205–218.
  • Schaeublin N, Braydich-Stolle L, Schrand A, Miller J, Hutchison J, Schlager J, Hussain S. 2011. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 3:410–420.
  • Schanen B, Das S, Reilly C, Warren W, Self W, Seal S, Drake D. 2013. Immunomodulation and T helper TH1/TH2 response polarization by CeO2 and TiO2 nanoparticles. PloS One. 8:e62816.
  • Schauberger E, Peinhaupt M, Cazares T, Lindsley A. 2016. Lipid mediators of allergic disease: Pathways, treatments, and emerging therapeutic targets. Curr Allergy Asthma Rep. 16:48.
  • Schaumann F, Borm P, Herbrich A, Knoch J, Pitz M, Schins R, Luettig B, Hohlfeld J, Heinrich J, Krug N. 2004. Metal-rich ambient particles (PM2.5) cause airway inflammation in healthy subjects. Am J Respir Crit Care Med. 170:898–903.
  • Scherbart A, Langer J, Bushmelev A, van Berlo D, Haberzettl P, van Schooten F, Schmidt A, Rose C, Schins R, Albrecht C. 2011. Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms. Part Fibre Toxicol. 8:31.
  • Schleh C, Muhlfeld C, Pulskamp K, Schmiedl A, Nassimi M, Lauenstein H, Braun A, Krug N, Erpenbeck V, Hohlfeld J. 2009. The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure. Respir Res. 10:90.
  • Schmid O, Stoeger T. 2016. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 99:133–143.
  • Schmidt M, Goebeler M. 2015. Immunology of metal allergies. J Dtsch Dermatol Ges. 13:653–659.
  • Schmidt M, Raghavan B, Muller V, Vogl T, Fejer G, Tchaptchet S, Keck S, Kalis C, Nielsen P, Galanos C, et al. 2010. Crucial role for human toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 11:814–819.
  • Schneider B, Constant S, Patierno S, Jurjus R, Ceryak S. 2012. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology. Toxicol Appl Pharmacol. 259:38–44.
  • Schuhmann D, Kubicka-Muranyi M, Mirtschewa J, Günther J, Kind P, Gleichmann E. 1990. Adverse immune reactions to gold. I. Chronic treatment with an Au (I) drug sensitizes mouse T-cells not to Au (I) but to Au (III) and induces autoantibody formation. J Immunol. 145:2132–2139.
  • Schulte P, Geraci C, Murashov V, Kuempel E, Zumwalde R, Castranova V, Hoover M, Hodson L, Martinez K. 2014. Occupational safety and health criteria for responsible development of nanotechnology. J Nanopart Res. 16:2153.
  • Schulte PA, Murashov V, Zumwalde R, Kuempel ED, Geraci CL. 2010. Occupational exposure limits for nanomaterials: State of the art. J Nanopart Res. 12:1971–1987.
  • Schulz J, Hohenberg H, Pflucker F, Gartner E, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Barlag H, Wittern K. 2002. Distribution of sunscreens on skin. Adv Drug Deliv Rev. 54:S157–S163.
  • Schulze C, Schaefer U, Ruge C, Wohlleben W, Lehr C. 2011. Interaction of metal oxide nanoparticles with lung surfactant protein A. Eur J Pharm Biopharm. 77:376–383.
  • Schuster B, Suk J, Woodworth G, Hanes J. 2013. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 34:3439–3446.
  • Schwarz T. 2005. Mechanisms of UV-induced immunosuppression. Keio J Med. 54:165–171.
  • Scoville D, Nolin J, Ogden H, An D, Afsharinejad Z, Johnson B, Bammler T, Gao X, Frevert C, Altemeier W, et al. 2019. Quantum dots and mouse strain influence house dust mite-induced allergic airway disease. Toxicol Appl Pharmacol. 368:55–62.
  • Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, Porter A, Ryan M, Chang Y, Gow A, et al. 2015. Pulmonary toxicity of instilled silver nanoparticles: Influence of size, coating and rat strain. PloS One. 10:e0119726.
  • Seite S, Zucchi H, Moyal D, Tison S, Compan D, Christiaens F, Gueniche A, Fourtanier A. 2003. Alterations in human epidermal Langerhans cells by ultraviolet radiation: Quantitative and morphological study. Br J Dermatol. 148:291–299.
  • Senapati V, Jain A, Gupta G, Pandey A, Dhawan A. 2015. Chromium oxide nanoparticle-induced genotoxicity and p53-dependent apoptosis in human lung alveolar cells. J Appl Toxicol. 35:1179–1188.
  • Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M. 2010. Study on penetration of titanium dioxide (TiO(2)) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci. 35:107–113.
  • Shahbazi M, Almeida P, Makila E, Kaasalainen M, Salonen J, Hirvonen J, Santos H. 2014. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials. 35:7488–7500.
  • Shahbazi M, Hamidi M, Mäkilä E, Zhang H, Almeida P, Kaasalainen M, Salonen J, Hirvonen J, Santos H. 2013. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials. 34:7776–7789.
  • Shang L, Nienhaus K, Nienhaus G. 2014. Engineered nanoparticles interacting with cells: Size matters. J Nanobiotechnol. 12:5.
  • Shao Q, Hall C. 2016. Binding preferences of amino acids for gold nanoparticles: A molecular simulation study. Langmuir. 32:7888–7896.
  • Sharma G, Kodali V, Gaffrey M, Wang W, Minard K, Karin N, Teeguarden J, Thrall B. 2014. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose-response profiles in vitro. Nanotoxicology. 8:663–675.
  • Sharma M, Salisbury R, Maurer E, Hussain S, Sulentic C. 2013. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line. Nanoscale. 5:3747–3756.
  • Shen H, Ackerman A, Cody V, Giodini A, Hinson E, Cresswell P, Edelson R, Saltzman W, Hanlon D. 2006. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology. 117:78–88.
  • Shen B, Scaiano J, English AM. 2006. Zeolite encapsulation decreases TiO2‐photosensitized ROS generation in cultured human skin fibroblasts. Photochem Photobiol. 82:5–12.
  • Shen T, Zhu W, Yang L, Liu L, Jin R, Duan J, Anderson J, Ai H. 2018. Lactosylated N-alkyl polyethylenimine-coated iron oxide nanoparticles induced autophagy in mouse dendritic cells. Regen Biomater. 5:141–149.
  • Sheng L, Wang L, Sang X, Zhao X, Hong J, Cheng S, Yu X, Liu D, Xu B, Hu R, et al. 2014. Nano-sized titanium dioxide-induced splenic toxicity: A biological pathway explored using microarray technology. J Hazard Mater. 278:180–188.
  • Shen C, Liang H, Wang C, Liao M, Jan T. 2012. Iron oxide nanoparticles suppressed T-helper-1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomed. 7:2729–2737.
  • Shen L, Tenzer S, Storck W, Hobernik D, Raker VK, Fischer K, Decker S, Dzionek A, Krauthäuser S, Diken M, et al. 2018. Protein corona-mediated targeting of nanocarriers to B-cells allows redirection of allergic immune responses. J Allergy Clin Immunol. 142:1558–1570.
  • Shen C, Wang C, Liao M, Jan T. 2011. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomed. 6:1229.
  • Shi Y, Yadav S, Wang F, Wang H. 2010. Endotoxin promotes adverse effects of amorphous silica nanoparticles on lung epithelial cells in vitro. J Toxicol Environ Health. 73:748–756.
  • Shim I, Choi K, Hirano S. 2017. Oxidative stress and cytotoxic effects of silver ion in mouse lung macrophages J774.1 cells. J Appl Toxicol. 37:471–478.
  • Shin S, Ye M, Kim H, Kang H. 2007. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol. 7:1813–1818.
  • Shirakawa T, Kusaka Y, Fujimura N, Goto S, Morimoto K. 1988. The existence of specific antibodies to cobalt in hard metal asthma. Clin Allergy. 18:451–460.
  • Shirakawa T, Kusaka Y, Fujimura N, Kato M, Heki S, Morimoto K. 1990. Hard metal asthma: Cross immunological and respiratory reactivity between cobalt and nickel? Thorax. 45:267–271.
  • Shirakawa T, Kusaka Y, Morimoto K. 1992. Specific IgE antibodies to nickel in workers with known reactivity to cobalt. Clin Exp Allergy. 22:213–218.
  • Shokri N, Javar H. 2015. Comparison of calcium phosphate and zinc oxide nanoparticles as dermal penetration enhancers for albumin. Indian J Pharm Sci. 77:694.
  • Shukla R, Sharma V, Pandey A, Singh S, Sultana S, Dhawan A. 2011. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 25:231–241.
  • Simon-Vazquez R, Lozano-Fernandez T, Davila-Grana A, Gonzalez-Fernandez A. 2016. Metal oxide nanoparticles interact with immune cells and activate different cellular responses. Int J Nanomed. 11:4657–4668.
  • Singh M, O'Hagan D. 2003. Recent advances in veterinary vaccine adjuvants. Int J Parasitol. 33:469–478.
  • Siriwardana K, Wang A, Gadogbe M, Collier W, Fitzkee N, Zhang D. 2015. Studying the effects of cysteine residues on protein interactions with silver nanoparticles. J Phys Chem C. 119:2910–2916.
  • Smijs T, Pavel S. 2011. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol Sci Appl. 4:95–112.
  • Smith Pease C, White I, Basketter D. 2002. Skin as a route of exposure to protein allergens. Clin Exp Dermatol. 27:296–300.
  • Smulders S, Golanski L, Smolders E, Vanoirbeek J, Hoet P. 2015. Nano-TiO2 modulates the dermal sensitization potency of dinitrochlorobenzene after topical exposure. Br J Dermatol. 172:392–399.
  • Smulders S, Kaiser J, Zuin S, van Landuyt K, Golanski L, Vanoirbeek J, Wick P, Hoet P. 2012. Contamination of nanoparticles by endotoxin: Evaluation of different test methods. Part Fibre Toxicol. 9:41.
  • Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K. 2008. In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size. Colloids Surf B Biointerf. 65:1–10.
  • Su C, Chen T, Chang C, Chuang K, Wu C, Liu W, Ho K, Lee K, Ho S, Tseng H, et al. 2013. Comparative proteomics of inhaled silver nanoparticles in healthy and allergen-provoked mice. Int J Nanomed. 8:2783–2799.
  • Sun T, Yan Y, Zhao Y, Guo F, Jiang C. 2012. Copper oxide nanoparticles induce autophagic cell death in A549 cells. PloS One. 7:e43442.
  • Sungsuwan S, Yin Z, Huang X. 2015. Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anti-cancer vaccines. ACS Appl Mater Interfaces. 7:17535–17544.
  • Szikszai Z, Kertész Z, Bodnár E, Borbíró I, Angyal A, Csedreki L, Furu E, Szoboszlai Z, Kiss Á, Hunyadi J. 2011. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis. Nuclear Instr Meth Physics Res Section B. 269:2278–2280.
  • Tak Y, Pal S, Naoghare P, Rangasamy S, Song J. 2015. Shape-dependent skin penetration of silver nanoparticles: Does it really matter? Sci Rep. 5:16908.
  • Tan M, Commens C, Burnett L, Snitch P. 1996. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Aus J Dermatol. 37:185–187.
  • Tang C, Inman M, van Rooijen N, Yang P, Shen H, Matsumoto K, O'Byrne P. 2001. TH Type 1-stimulating activity of lung macrophages inhibits TH2-mediated allergic airway inflammation by an IFNγ-dependent mechanism. J Immunol. 166:1471–1481.
  • Taylor U, Klein S, Petersen S, Kues W, Barcikowski S, Rath D. 2010. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry A. 77:439–446.
  • Templeton D. 2015. Speciation in metal toxicity and metal-based therapeutics. Toxics. 3:170–186.
  • Thiele L, Merkle H, Walter E. 2003. Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm Res. 20:221–228.
  • Thierse H, Gamerdinger K, Junkes C, Guerreiro N, Weltzien H. 2005. T cell receptor (TCR) interaction with haptens: Metal ions as non-classical haptens. Toxicology. 209:101–107.
  • Thyssen J, Menne T. 2010. Metal allergy-a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem Res Toxicol. 23:309–318.
  • Tiano L, Armeni T, Venditti E, Barucca G, Mincarelli L, Damiani E. 2010. Modified TiO2 particles differentially affect human skin fibroblasts exposed to UVA light. Free Rad Biol Med. 49:408–415.
  • Toda T, Yoshino S. 2016. Enhancement of OVA-specific TH1, TH2, and TH17 immune responses by amorphous silica nanoparticles. Int J Immunopathol Pharmacol. 29:408–420.
  • Toews G, Bergstresser P, Streilein J. 1980. Epidermal langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J Immunol. 124:445–453.
  • Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U. 2004. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol. 123:168–176.
  • Tomić S, Đokić J, Vasilijić S, Ogrinc N, Rudolf R, Pelicon P, Vučević D, Milosavljević P, Janković S, Anžel I, et al. 2014. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS One. 9:e96584.
  • Tončić RJ, Lipozenčić J, Martinac I, Gregurić S. 2011. Immunology of allergic contact dermatitis. Acta Dermatovenerol Croat. 19:51–68.
  • Try C, Moulari B, Béduneau A, Fantini O, Pin D, Pellequer Y, Lamprecht A. 2016. Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models. Eur J Pharm Biopharm. 100:101–108.
  • Tsuji G, Hashimoto-Hachiya A, Takemura M, Kanemaru T, Ichihashi M, Furue M. 2017. Palladium and platinum nanoparticles Activate AHR and NRF2 in Human Keratinocytes-Implications in Vitiligo Therapy. J Invest Dermatol. 137:1582.
  • Tulve N, Stefaniak A, Vance M, Rogers K, Mwilu S, LeBouf R, Schwegler-Berry D, Willis R, Thomas T, Marr L. 2015. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures. Int J Hyg Environ Health. 218:345–357.
  • Tuomela S, Autio R, Buerki-Thurnherr T, Arslan O, Kunzmann A, Andersson-Willman B, Wick P, Mathur S, Scheynius A, Krug H, et al. 2013. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS One. 8:e68415.
  • Turci F, Peira E, Corazzari I, Fenoglio I, Trotta M, Fubini B. 2013. Crystalline phase modulates the potency of nanometric TiO2 to adhere to and perturb the stratum corneum of porcine skin under indoor light. Chem Res Toxicol. 26:1579–1590.
  • Turčić P, Marinović Kulišić S, Lipozenčić J. 2013. Patch test reactions to metal salts in patients with different types of dermatitis. Acta Dermatovenerol Croatica. 21:180–180.
  • Tuschl H, Kovac R, Weber E. 2000. The expression of surface markers on dendritic cells as indicators for the sensitizing potential of chemicals. Toxicol In Vitro. 14:541–549.
  • Val S, Hussain S, Boland S, Hamel R, Baeza-Squiban A, Marano F. 2009. Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: Need for multi-parametric evaluation due to adsorption artifacts. Inhal Toxicol. 21:115–122.
  • Vallhov H, Kupferschmidt N, Gabrielsson S, Paulie S, Strømme M, Garcia‐Bennett A, Scheynius A. 2012. Adjuvant properties of mesoporous silica particles tune the development of effector T cells. Small. 8:2116–2124.
  • Vamanu C, Høl P, Allouni Z, Elsayed S, Gjerdet N. 2008. Formation of potential titanium antigens based on protein binding to titanium dioxide nanoparticles. Int J Nanomed. 3:69–74.
  • van Doren E, De Temmerman P, Francisco M, Mast J. 2011. Determination of volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. J Nanobiotechnol. 9:17.
  • Vance M, Kuiken T, Vejerano E, McGinnis S, Hochella M, Rejeski D, Hull M. 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 6:1769–1780.
  • Vandebriel R, Vermeulen J, van Engelen L, de Jong B, Verhagen L, de la Fonteyne-Blankestijn L, Hoonakker M, de Jong W. 2018. The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo. Part Fibre Toxicol. 15:9.
  • Vemula P, Anderson R, Karp J. 2011. Nanoparticles reduce nickel allergy by capturing metal ions. Nat Nanotechnol. 6:291–295.
  • Vennemann A, Alessandrini F, Wiemann M. 2017. Differential effects of surface-functionalized zirconium oxide nanoparticles on alveolar macrophages, rat lung, and a mouse allergy model. Nanomaterials. 7:pii E280.
  • Verstraelen S, Bloemen K, Nelissen I, Witters H, Schoeters G, van Den Heuvel R. 2008. Cell types involved in allergic asthma and their use in in vitro models to assess respiratory sensitization. Toxicol In Vitro. 22:1419–1431.
  • Vogt A, Combadiere B, Hadam S, Stieler K, Lademann J, Schaefer H, Autran B, Sterry W, Blume-Peytavi U. 2006. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol. 126:1316–1322.
  • von Garnier C, Filgueira L, Wikstrom M, Smith M, Thomas J, Strickland D, Holt P, Stumbles P. 2005. Anatomical location determines the distribution and function of dendritic cells and other apcs in the respiratory tract. J Immunol. 175:1609–1618.
  • Wagner A, Bleckmann C, Murdock R, Schrand A, Schlager J, Hussain S. 2007. Cellular inter-action of different forms of aluminum nanoparticles in rat alveolar macrophages. J Phys Chem B. 111:7353–7359.
  • Walczak-Drzewiecka A, Wyczólkowska J, Dastych J. 2003. Environmentally-relevant metal and transition metal ions enhance FcεRI-mediated mast cell activation. Environ. Health Perspect. 111:708–713.
  • Wang J, Kishore U, Lim B, Strong P, Reid K. 1996. Interaction of human lung surfactant proteins-A and -D with mite (dermatophagoides pteronyssinus) allergen. Clin Exp Immunol. 106:367–373.
  • Wang B, Shiao J, Chen C, Lee Y, Guo Y. 2007. Tumour necrotizing factor-alpha promoter and GST-T1 genotype predict skin allergy to chromate in cement workers in Taiwan. Contact Derm. 57:309–315.
  • Wang C, Wang S, Xia Q, He W, Yin J, Fu P, Li J. 2013. Phototoxicity of zinc oxide nanoparticles in HACAT keratinocytes-generation of oxidative DNA damage during UVA and visible light irradiation. J Nanosci Nanotechnol. 13:3880–3888.
  • Warner S, Knight D. 2008. Airway modeling and remodeling in the pathogenesis of asthma. Curr Opin Allergy Clin Immunol. 8:44–48.
  • Warshaw E, Belsito D, Taylor J, Sasseville D, DeKoven J, Zirwas M, Fransway A, Mathias C, Zug K, DeLeo V. 2013. North American Contact Dermatitis Group patch test results: 2009 to 2010. Dermatitis. 24:50–59.
  • Weber F, Nemeth T, Csepregi J, Dudeck A, Roers A, Ozsvari B, Oswald E, Puskas L, Jakob T, Mocsai A, et al. 2015. Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. J Exp Med. 212:15–22.
  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. 2012. Titanium dioxide nanoparticles in food and personal care products . Environ Sci Technol. 46:2242–2250.
  • Winkler H, Kornprobst J, Wick P, von Moos L, Trantakis I, Schraner E, Bathke B, Hochrein H, Suter M, Naegeli H. 2017. Myd88-dependent pro-IL-1β induction in dendritic cells exposed to food-grade synthetic amorphous silica. Particle Fibre Toxicol. 14:21.
  • Winter M, Beer H, Hornung V, Kramer U, Schins R, Forster I. 2011. Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology. 5:326–340.
  • Wohlleben W, Mielke J, Bianchin A, Ghanem A, Freiberger H, Rauscher H, Gemeinert M, Hodoroaba V. 2017. Reliable nanomaterial classification of powders using the volume-specific surface area method. J Nanoparticle Res. 19:61.
  • Wolf P, Donawho C, Kripke M. 1993. Analysis of the protective effect of different sunscreens on ultraviolet radiation-induced local and systemic suppression of contact hypersensitivity and inflammatory responses in mice. J Invest Dermatol. 100:254–259.
  • Wyman A, Hines S. 2018. Update on metal-induced occupational lung disease. Curr Opin Allergy Clin Immunol. 18:73–79.
  • Xie G, Lu W, Lu D. 2015. Penetration of titanium dioxide nanoparticles through slightly damaged skin in vitro and in vivo. J Appl Biomat Functional Mater. 13:356–361.
  • Xiong S, George S, Ji Z, Lin S, Yu H, Damoiseaux R, France B, Ng K, Loo S. 2013. Size of TiO2 nanoparticles influences their phototoxicity: An in vitro investigation. Arch Toxicol. 87:99–109.
  • Xu Y, Tang H, Liu J, Wang H, Liu Y. 2013. Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicol Lett. 219:42–48.
  • Xue C, Li X, Liu G, Liu W. 2016. Evaluation of mitochondrial respiratory chain on the generation of reactive oxygen species and cytotoxicity in HACAT cells induced by nanosized titanium dioxide under UVA irradiation. Int J Toxicol. 35:644–653.
  • Xue C, Luo W, Yang X. 2015. A mechanism for nano-titanium dioxide-induced cytotoxicity in HACAT cells under UVA irradiation. Biosci Biotechnol Biochem. 79:1384–1390.
  • Yamaki K, Yoshino S. 2009. Comparison of inhibitory activities of zinc oxide ultrafine and fine particulates on IgE-induced mast cell activation. Biometals. 22:1031–1040.
  • Yan L, Liu X, Liu W, Tan X, Xiong F, Gu N, Hao W, Gao X, Cao J. 2015. Fe2O3 nanoparticles suppress Kv1.3 channels via affecting the redox activity of Kvβ2 subunit in Jurkat T-cells. Nanotechnology. 26:505103.
  • Yanagisawa R, Takano H, Inoue K, Koike E, Kamachi T, Sadakane K, Ichinose T. 2009. Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in nc/nga mice. Exp Biol Med. 234:314–322.
  • Yanagisawa R, Takano H, Inoue K, Koike E, Sadakane K, Ichinose T. 2010. Size effects of polystyrene nanoparticles on atopic dermatitis-like skin lesions in nc/nga mice. Int J Immunopathol Pharmacol. 23:131–141.
  • Yang W, Peters J, Williams R. 2008. Inhaled nanoparticles-a current review. Int J Pharm. 356:239–247.
  • Yang Y, Westerhoff P. 2014. Presence in, and release of, nanomaterials from consumer products. In: Capco D, and Chen Y, editors. Nanomaterial: Impacts on Cell Biology and Medicine. Dordrecht, Netherlands: Springer; p. 1–17.
  • Yang D, Zhao Y, Guo H, Li Y, Tewary P, Xing G, Hou W, Oppenheim J, Zhang N. 2010. [Gd@C(82)(OH)22](n) nanoparticles induce dendritic cell maturation and activate TH1 immune responses. ACS Nano. 4:1178–1186.
  • Yazdi A, Guarda G, Riteau N, Drexler S, Tardivel A, Couillin I, Tschopp J. 2010. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1ββ. Proc Nat Acad Sci USA. 107:19449–19454.
  • Yin H, Chen R, Casey P, Ke P, Davis T, Chen C. 2015. Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Adv. 5:73963–73973.
  • Yin J, Liu J, Ehrenshaft M, Roberts J, Fu P, Mason R, Zhao B. 2012. Phototoxicity of nano titanium dioxides in HACAT keratinocytesgeneration of reactive oxygen species and cell damage. Toxicol Appl Pharmacol. 263:81–88.
  • Yoshida K, Kubo A, Fujita H, Yokouchi M, Ishii K, Kawasaki H, Nomura T, Shimizu H, Kouyama K, Ebihara T, et al. 2014. Distinct behavior of human langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol. 134:856–864.
  • Yoshida T, Yoshioka Y, Fujimura M, Yamashita K, Higashisaka K, Morishita Y, Kayamuro H, Nabeshi H, Nagano K, Abe Y, et al. 2011. Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice. Nanoscale Res Lett. 6:195.
  • Yoshioka Y, Kuroda E, Hirai T, Tsutsumi Y, Ishii K. 2017. Allergic responses induced by the immunomodulatory effects of nanomaterials upon skin exposure. Front Immunol. 8:169.
  • Yu Q, Chen Z. 2018. Establishment of different experimental asthma models in mice. Exp Ther Med. 15:2492–2498.
  • Zakharov S, Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Schwarz J, Navratil T, Komarc M. 2016. Markers of inflammation among workers exposed to engineered TiO2 nanoparticles. Eur Resp J. 48:110–118.
  • Zelga PJ, Górnicz MM, Głuszkiewicz JM, Piasecka-Zelga J. 2016. Outcomes of acute dermal irritation and sensitisation tests on active dressings for chronic wounds: A comparative study. J Wound Care. 25:722–729.
  • Zhang K, Liu L, Bai T, Guo Z. 2018. Interaction between hydrophobic Au nanoparticles and pulmonary surfactant (DPPC) monolayers. J Biomed Nanotech. 14:526–535.
  • Zhang L, Monteiro-Riviere N. 2008. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol. 21:166–180.
  • Zhang L, Monteiro-Riviere N. 2019. Toxicity assessment of six TiO nanoparticles in human epidermal keratinocytes. Cutan Ocular Toxicol. 38:66–80.
  • Zhang W, Yao Y, Sullivan N, Chen Y. 2011. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol. 45:4422–4428.
  • Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. 2018. Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Mol Pharm. 15:1791–1799.
  • Zhou D, Bennett S, Keller A. 2012. Increased mobility of metal oxide nanoparticles due to photo and thermal induced disagglomeration. PloS One. 7:e37363.
  • Zhu R, Zhu Y, Zhang M, Xiao Y, Du X, Liu H, Wang S. 2014. The induction of maturation on dendritic cells by TiO2 and Fe3O4@TiO2 nanoparticles via NF-κB signaling pathway. Mater Sci Eng C Mater Biol Appl. 39:305–314.
  • Zunft HJ. 1996. Target Organ Toxicology Series. In: Dean JH, Luster MI, Munson AE, Kimber I, editors. Vol. 40, Issue 3, Immunotoxicology and immunopharmacology. XXII and 761 pages. Philadelphia (PA): Lippincott-Raven Publishers.
  • Zvyagin A, Zhao X, Gierden A, Sanchez W, Ross J, Roberts M. 2008. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Optics. 13:064031.