4,959
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis

&
Pages 93-104 | Received 12 May 2021, Accepted 20 Jul 2021, Published online: 26 Aug 2021

References

  • Ahmed M, Brinkmann Frye E, Degenhardt T, Thorpe S, Baynes J. 1997. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 324(2):565–570.
  • Ahmed M, Thorpe S, Baynes J. 1986. Identification of Nε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 261(11):4889–4894.
  • Akıllıoğlu H, Gökmen V. 2019. Advanced glycation end-products (AGE). In: Wang S, editor. Chemical hazards in thermally-processed foods. Singapore: Springer, p. 121–151.
  • Al Jahdali N, Gadonna-Widehem P, Delayre-Orthez C, Marier D, Garnier B, Carbonero F, Anton P. 2017. Repeated oral exposure to Nε-carboxymethyllysine, a Maillard reaction product, alleviates gut microbiota dysbiosis in colitic mice. Dig Dis Sci. 62(12):3370–3384.
  • Andersson U, Ottestad W, Tracey K. 2020. Extracellular HMGB1: A therapeutic target in severe pulmonary inflammation including COVID-19? Mol Med. 26(1):42.
  • Bansal S, Siddarth M, Chawla D, Banerjee B, Madhu S, Tripathi A. 2012. Advanced glycation end-products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro. Mol Cell Biochem. 361(1–2):289–296.
  • Biemel K, Reihl O, Conrad J, Lederer M. 2001. Formation pathways for lysine-arginine crosslinks derived from hexoses and pentoses by Maillard processes: Unraveling the structure of a pentosidine precursor. J Biol Chem. 276(26):23405–23412.
  • Bucala R, Makita Z, Vega G, Grundy S, Koschinsky T, Cerami A, Vlassara H. 1994. Modification of low density lipoprotein by advanced glycation end-products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci USA. 91(20):9441–9445.
  • Byun K, Yoo Y, Son M, Lee J, Jeong G-B, Park YM, Salekdeh GH, Lee B. 2017. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacol Ther. 177:44–55.
  • Cai W, Ramdas M, Zhu L, Chen X, Striker G, Vlassara H. 2012. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the anti-oxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci USA. 109(39):15888–15893.
  • Cankurtaran M, Yavuz B, Halil M, Ulger Z, Haznedaroğlu I, Arıoğul S. 2012. Increased ferritin levels could reflect ongoing aging-associated inflammation and may obscure underlying iron deficiency in the geriatric population. Eur Geriat Med. 3(5):277–280.
  • Charissou A, Ait-Ameur L, Birlouez-Aragon I. 2007. Evaluation of a gas chromatography/mass spectrometry method for the quantification of carboxymethyllysine in food samples. J Chromatogr A. 1140(1–2):189–194.
  • Chen J, Kelley W, Goldstein D. 2020. Role of aging and the immune response to respiratory viral infections: Potential implications for COVID-19. J Immunol. 205(2):313–320.
  • Chen X, Kitts D. 2011. Anti-oxidant and anti-inflammatory activities of Maillard reaction product isolated from sugar-amino acid model systems. J Agric Food Chem. 59(20):11294–11303.
  • Chen Y, Filipov N, Guo T. 2018. Dietary glycation products regulate immune homeostasis: Early glycation products promote prostate cancer cell proliferation through modulating macrophages. Mol Nutr Food Res. 62(3):201700641.
  • Chen Y, Guo K, Nagy T, Guo T. 2020. Chronic oral exposure to glycated whey proteins increases survival of aged male NOD mice with autoimmune prostatitis by regulating the gut microbiome and anti-inflammatory responses. Food Funct. 11(1):153–162.
  • Chen Y, Guo T. 2019. Dietary early glycation products promote the growth of prostate tumors more than advanced glycation end-products through modulation of macrophage polarization. Mol Nutr Food Res. 63(4):e1800885.
  • Chen Y, Nagy T, Guo T. 2019. Glycated whey proteins protect NOD mice against Type 1 diabetes by increasing anti-inflammatory responses and decreasing autoreactivity to self-antigens. J Funct Foods. 56:171–181.
  • Collison KS, Parhar RS, Saleh SS, Meyer BF, Kwaasi AA, Hammami MM, Schmidt AM, Stern DM, Al-Mohanna FA. 2002. RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end-products (AGEs). J Leukoc Biol. 71(3):433–444.
  • Corman B, Duriez M, Poitevin P, Heudes D, Bruneval P, Tedgui A, Levy B. 1998. Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proc Natl Acad Sci USA. 95(3):1301–1306.
  • Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, Tan ALY, Fukami K, Thallas-Bonke V, Nawroth PP, et al. 2009. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol. 20(4):742–752.
  • Coughlan MT, Yap FYT, Tong DCK, Andrikopoulos S, Gasser A, Thallas-Bonke V, Webster DE, Miyazaki J-I, Kay TW, Slattery RM, et al. 2011. Advanced glycation end-products are direct modulators of β-cell function. Diabetes. 60(10):2523–2532.
  • Cowie CC, Rust KF, Ford ES, Eberhardt MS, Byrd-Holt DD, Li C, Williams DE, Gregg EW, Bainbridge KE, Saydah SH, et al. 2009. Full accounting of diabetes and pre-diabetes in U.S. population in 1988-1994 and 2005-2006. Diabetes Care. 32(2):287–294.
  • Cruz-Sánchez F, Gironès X, Ortega A, Alameda F, Lafuente J. 2010. Oxidative stress in Alzheimer’s disease hippocampus: A topographical study. J Neurol Sci. 299(1–2):163–167.
  • Dalal M, Ferrucci L, Sun K, Beck J, Fried L, Semba R. 2009. Elevated serum advanced glycation end-products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci. 64(1):132–137.
  • de Francesco E, Vella V, Belfiore A. 2020. COVID-19 and diabetes: The importance of controlling RAGE. Front Endocrinol. 11:526.
  • de Christopher L. 2017. The paradox in dietary advanced glycation end-products research the source of the serum and urinary advanced glycation end-products is the intestines, not the food. Adv Nutr. 8:679–683.
  • Delgado-Andrade C, de la Cueva S, Peinado M, Rufian-Henares J, Navarro M, Rubio L. 2017. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products. Food Res Intl. 100:134–142.
  • Delgado-Andrade C, Seiquer I, Navarro M, Morales F. 2007. Maillard reaction indicators in diets usually consumed by adolescent population. Mol Nutr Food Res. 51(3):341–351.
  • Dennis M, Nicolson A, Lehmann A, Junaid O, Byrne E, Hopkinson N. 1998. Clinical associations of lymphopenia in elderly persons admitted to acute medical and psychiatric wards. Gerontology. 44(3):168–171.
  • Dittrich R, Hoffmann I, Stahl P, Muller A, Beckmann M, Pischetsrieder M. 2006. Concentrations of Nε-carboxymethyllysine in human breast milk, infant formulas, and urine of infants. J Agric Food Chem. 54(18):6924–6928.
  • Dozio E, Sitzia C, Pistelli L, Cardani R, Rigolini R, Ranucci M, Corsi Romanelli M. 1975. Soluble receptor for advanced glycation end-products and its forms in COVID-19 patients with and without diabetes mellitus: A pilot study on their role as disease biomarkers. J Clin Med. 9(11):3785.
  • Drenth H, Zuidema S, Krijnen W, Bautmans I, Smit A, van der Schans C, Hobbelen H. 2018. Advanced glycation end-products are associated with physical activity and physical functioning in the older population. J Gerontol A Biol Sci Med Sci. 73(11):1545–1551.
  • Dyer D, Blackledge J, Thorpe S, Baynes J. 1991. Formation of pentosdine during non-enzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem. 266(18):11654–11660.
  • Federico G, Gori M, Randazzo E, Vierucci F. 2016. Skin advanced glycation end-products evaluation in infants according to the type of feeding and mother’s smoking habits. SAGE Open Med. 4:2050312116682126.
  • Figliuolo VR, Dos Santos LM, Abalo A, Nanini H, Santos A, Brittes NM, Bernardazzi C, de Souza HSP, Vieira LQ, Coutinho-Silva R, et al. 2017. Sulfate-reducing bacteria stimulate gut immune responses and contribute to inflammation in experimental colitis. Life Sci. 189:29–38.
  • Fishman S, Sonmez H, Basman C, Singh V, Poretsky L. 2018. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review. Mol Med. 24(1):59.
  • Fransen F, van Beek AA, Borghuis T, Aidy SE, Hugenholtz F, van der Gaast-de Jongh C, Savelkoul HFJ, De Jonge MI, Boekschoten MV, Smidt H, et al. 2017. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 8:1385.
  • Fu M, Requena J, Jenkins A, Lyons T, Baynes J, Thorpe S. 1996. The advanced glycation end-product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem. 271(17):9982–9986.
  • Goldberg T, Cai W, Peppa M, Dardaine V, Baliga B, Uribarri J, Vlassara H. 2004. Advanced glycoxidation end-products in commonly consumed foods. J Am Diet Assoc. 104(8):1287–1291.
  • Gomes R, Sousa Silva M, Quintas A, Cordeiro C, Freire A, Pereira P, Martins A, Monteiro E, Barroso E, Ponces Freire A. 2005. Argpyrimidine, a methylglyoxal-derived advanced glycation end-product in familial amyloidotic polyneuropathy. Biochem J. 385(2):339–345.
  • Gorska-Ciebiada M, Saryusz-Wolska M, Borkowska A, Ciebiada M, Loba J. 2015. C-reactive protein, advanced glycation end-products, and their receptor in Type 2 diabetic, elderly patients with mild cognitive impairment. Front Aging Neurosci. 7:209.
  • Gupta R, Gupta K, Sharma A, Das M, Ansari I, Dwivedi P. 2018. Maillard reaction in food allergy: Pros and cons. Crit Rev Food Sci Nutr. 58(2):208–226.
  • Gurung M, Li Z, You H, Rodrigues R, Jump D, Morgun A, Shulzhenko N. 2020. Role of gut microbiota in Type 2 diabetes pathophysiology. EBioMedicine. 51:102590.
  • Han K, Jin W, Mao Z, Dong S, Zhang Q, Yang Y, Zeng M. 2018. Microbiome and butyrate production are altered in gut of rats fed glycated fish protein diet. J Funct Foods. 47:423–433.
  • Han X-Q, Gong Z-J, Xu S-Q, Li X, Wang L-K, Wu S-M, Wu J-H, Yang H-F. 2014. Advanced glycation end-products promote differentiation of CD4(+) T-helper cells toward pro-inflammatory response. J Huazhong Univ Sci Technolog Med Sci. 34(1):10–17.
  • Hein G, Köhler M, Oelzner P, Stein G, Franke S. 2005. The advanced glycation end-product pentosidine correlates to IL-6 and other relevant inflammatory markers in rheumatoid arthritis. Rheumatol Int. 26(2):137–141.
  • Hodge J. 1953. Dehydrated foods - Chemistry of Browning reactions in model systems. J Agric Food Chem. 1(15):928–943.
  • Huang J, Lee Y, Chuang L, Guh J, Hwang J. 2015. Cinnamaldehyde and nitric oxide attenuate advanced glycation end-products-induced the Jak/STAT signaling in human renal tubular cells. J Cell Biochem. 116(6):1028–1038.
  • Hull G, Woodside J, Ames J, Cuskelly G. 2012. Nε-(Carboxymethyl)lysine content of foods commonly consumed in a Western style diet. Food Chem. 131(1):170–174.
  • Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, Sommer F, Bäckhed F, Hansson GC, Johansson MEV. 2015. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16(2):164–177.
  • Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, Hu Y, Li J, Liu Y. 2015. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 5:8096.
  • Jin X, Yao T, Zhou Z, Zhu J, Zhang S, Hu W, Shen C. 2015. Advanced glycation end-products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. Biomed Res Int. 2015:732450.
  • Jung T, Catalgol B, Grune T. 2009. The proteasomal system. Mol Aspects Med. 30(4):191–296.
  • Kaanane A, Labuza T. 1989. The Maillard reaction in foods. Prog Clin Biol Res. 304:301–327.
  • Kamo T, Tasaka S, Tokuda Y, Suzuki S, Asakura T, Yagi K, Namkoong H, Ishii M, Hasegawa N, Betsuyaku T. 2015. Levels of soluble receptor for advanced glycation end-products in bronchoalveolar lavage fluid in patients with various inflammatory lung diseases. Clin Med Insights Circ Respir Pulm Med. 9(1):147–154.
  • Kellow N, Coughlan M. 2015. Effect of diet-derived advanced glycation end-products on inflammation. Nutr Rev. 73(11):737–759.
  • Kerkeni M, Gharbi J. 2020. RAGE receptor: May be a potential inflammatory mediator for SARS-COV-2 infection? Med Hypotheses. 144:109950.
  • Kitts D, Chen X, Jing H. 2012. Demonstration of anti-oxidant and anti-inflammatory bioactivities from sugar-amino acid Maillard reaction products. J Agric Food Chem. 60(27):6718–6727.
  • Koschinsky T, He C-J, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. 1997. Orally-absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 94(12):6474–6479.
  • Lander H, Tauras J, Ogiste J, Hori O, Moss R, Schmidt A. 1997. Activation of the receptor for advanced glycation end-products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem. 272(28):17810–17814.
  • Lecube A, Hernández C, Genescà J, Esteban J, Jardí R, García L, Simó R. 2004. Diabetes is the main factor accounting for the high ferritin levels detected in chronic Hepatitis C virus infection. Diabetes Care. 27(11):2669–2675.
  • Lederer M, Klaiber R. 1999. Cross-linking of proteins by Maillard processes: Characterization and detection of lysine-arginine crosslinks derived from glyoxal and methylglyoxal. Bioorg Med Chem. 7(11):2499–2507.
  • Li H, Manwani B, Leng S. 2011. Frailty, inflammation, and immunity. Aging Dis. 2(6):466–473.
  • Li J, Hou F, Guo Z, Shan Y, Zhang X, Liu Z. 2007. Advanced glycation end-products up-regulate C-reactive protein synthesis by human hepatocytes through stimulation of monocyte IL-6 and IL-1 beta production. Scand J Immunol. 66(5):555–562.
  • Li M, Zeng M, He Z, Zheng Z, Qin F, Tao G, Zhang S, Chen J. 2015. Increased accumulation of protein-bound Nε-(carboxymethyl)lysine in tissues of healthy rats after chronic oral Nε-(carboxymethyl)lysine. J Agric Food Chem. 63(5):1658–1663.
  • Lim A, Radujkovic A, Weigand M, Merle U. 2021. Soluble receptor for advanced glycation end-products (sRAGE) as a biomarker of COVID-19 disease severity and indicator of the need for mechanical ventilation, ARDS and mortality. Ann Intensive Care. 11(1):50.
  • Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R 2020. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 18(1):206. DOI:https://doi.org/10.1186/s12967-020-02374-0.
  • Lopez-Garcia E, Schulze M, Fung T, Meigs J, Rifai N, Manson J, Hu F. 2004. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 80(4):1029–1035.
  • Loubinoux J, Bronowicki J, Pereira I, Mougenel J, Faou A. 2002. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol. 40(2):107–112.
  • Lu C, He J, Cai W, Liu H, Zhu L, Vlassara H. 2004. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci USA. 101(32):11767–11772.
  • Lu H, Xu S, Liang X, Dai Y, Huang Z, Ren Y, Lin J, Liu X. 2019. Advanced glycated end-products alter neutrophil effect on regulation of CD4+ T-cell differentiation through induction of myeloperoxidase and neutrophil elastase activities. Inflammation. 42(2):559–571.
  • Luevano-Contreras C, Chapman-Novakofski K. 2010. Dietary advanced glycation end-products and aging. Nutrients. 2(12):1247–1265.
  • Mahajan N, Bahl A, Dhawan V. 2010. C-reactive protein (CRP) up-regulates expression of receptor for advanced glycation end-products (RAGE) and its inflammatory ligand EN-RAGE in THP-1 cells: Inhibitory effects of atorvastatin. Intl J Cardiol. 142(3):273–278.
  • Mao YX, Cai WJ, Sun XY, Dai PP, Li XM, Wang Q, Huang XL, He B, Wang PP, Wu G, et al. 2018. RAGE-dependent mitochondria pathway: A novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end-products. Cell Death Dis. 9(6):674.
  • Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, McKenzie C, Kranich J, Oliveira AC, Rossello FJ, et al. 2017. Gut microbial metabolites limit the frequency of autoimmune T-cells and protect against Type 1 diabetes. Nat Immunol. 18(5):552–562.
  • Marungruang N, Fak F, Tareke E. 2016. Heat-treated high-fat diet modifies gut microbiota and metabolic markers in apoe-/- mice. Nutr Metab. 13:22.
  • Mirlohi M, Yaghooti H, Shirali S, Aminasnafi A, Olapour S. 2018. Increased levels of advanced glycation end-products positively correlate with iron overload and oxidative stress markers in patients with β-thalassemia major. Ann Hematol. 97(4):679–684.
  • Miyata T, Taneda S, Kawai R, Ueda Y, Horiuchi S, Hara M, Maeda K, Monnier VM. 1996. Identification of pentosidine as a native structure for advanced glycation end-products in β-2-microglobulin-containing amyloid fibrils in patients with dialysis-related amyloidosis. Proc Natl Acad Sci USA. 93(6):2353–2358.
  • Nagano M, Fukami K, Yamagishi S-I, Sakai K, Kaida Y, Matsumoto T, Hazama T, Tanaka M, Ueda S, Okuda S. 2011. Tissue level of advanced glycation end-products is an independent determinant of high-sensitivity C-reactive protein levels in haemodialysis patients. Nephrology. 16(3):299–303.
  • Nagaraj R, Shipanova I, Faust F. 1996. Protein crosslinking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine crosslink derived from methylglyoxal. J Biol Chem. 271(32):19338–19345.
  • Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H. 2018. Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging. 4(4):267–285.
  • Nakamura K, Yamagishi S, Adachi H, Kurita-Nakamura Y, Matsui T, Yoshida T, Imaizumi T. 2007. Serum levels of sRAGE, the soluble form of receptor for advanced glycation end-products, are associated with inflammatory markers in patients with Type 2 diabetes. Mol Med. 13(3–4):185–189.
  • Namiki M, Hayashi T. 1983. A new mechanism of the Maillard reaction involving sugar fragmentation and free-radical formation. ACS Symp Series. 215:21–46.
  • Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A. 1992. Cloning and expression of a cell surface receptor for advanced glycosylation end-products of proteins. J Biol Chem. 267(21):14998–15004.
  • Nonaka K, Kajiura Y, Bando M, Sakamoto E, Inagaki Y, Lew JH, Naruishi K, Ikuta T, Yoshida K, Kobayashi T, et al. 2018. Advanced glycation end-products increase IL-6 and ICAM-1 expression via RAGE, MAPK and NF-κB pathways in human gingival fibroblasts. J Periodontal Res. 53(3):334–344.
  • Ohashi K, Takahashi HK, Mori S, Liu K, Wake H, Sadamori H, Matsuda H, Yagi T, Yoshino T, Nishibori M, et al. 2010. Advanced glycation end-products enhance monocyte activation during human mixed lymphocyte reaction. Clin Immunol. 134(3):345–353.
  • Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. 2014. Role of advanced glycation end-products in cellular signaling. Redox Biol. 2:411–429.
  • Peppa M, Stavroulakis P, Raptis S. 2009. Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen. 17(4):461–472.
  • Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, Skibsted LH, Dragsted LO. 2013. Advanced glycation end-products in food and their effects on health. Food Chem Toxicol. 60:10–37.
  • Qin D, Li L, Li J, Li J, Zhao D, Li Y, Li B, Zhang X. 2018. A new compound isolated from the reduced ribose-tryptophan Maillard reaction products exhibits distinct anti-inflammatory activity. J Agric Food Chem. 66(26):6752–6761.
  • Qu W, Nie C, Zhao J, Ou X, Zhang Y, Yang S, Bai X, Wang Y, Wang J, Li J. 2018. Microbiome-metabolomics analysis of the impacts of long-term dietary advanced glycation end-product consumption on C57BL/6 mouse fecal microbiota and metabolites. J Agric Food Chem. 66(33):8864–8875.
  • Qu W, Yuan X, Zhao J, Zhan Y, Hu J, Wang J, Li J. 2017. Dietary advanced glycation end-products modify gut microbial composition and partially increase colon permeability in rats. Mol Nutr Food Res. 61(10):201700118.
  • Reddy S, Bichler J, Wells-Knecht K, Thorpe S, Baynes J. 1995. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end-product (AGE) antigen in tissue proteins. Biochemistry. 34(34):10872–10878.
  • Rhee S, Kim Y. 2018. The role of advanced glycation end-products in diabetic vascular complications. Diabetes Metab J. 42(3):188–195.
  • Rojas A, Delgado-López F, Perez-Castro R, Gonzalez I, Romero J, Rojas I, Araya P, Añazco C, Morales E, Llanos J. 2016. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumour Biol. 37(3):3321–3329.
  • Rojas A, Gonzalez I, Morales M. 2020. SARS-CoV-2-mediated inflammatory response in lungs: Should we look at RAGE? Inflamm Res. 69(7):641–643.
  • Roncero-Ramos I, Delgado-Andrade C, Tessier F, Niquet-Leridon C, Strauch C, Monnier V, Navarro M. 2013. Metabolic transit of N(ε)-carboxymethyl-lysine after consumption of AGEs from bread crust. Food Funct. 4(7):1032–1039.
  • Roncero-Ramos I, Niquet-Leridon C, Strauch C, Monnier V, Tessier F, Navarro M, Delgado-Andrade C. 2014. An advanced glycation end-product (AGE)-rich diet promotes Nε-carboxymethyl-lysine accumulation in the cardiac tissue and tendons of rats. J Agric Food Chem. 62(25):6001–6006.
  • Scheijen R, Clevers E, Engelen L, Dagnelie P, Brouns F, Stehouwer C, Schalkwijk C. 2016. Analysis of advanced glycation end-products in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem. 190:1145–1150.
  • Scheijen J, Hanssen N, van Greevenbroek M, van der Kallen C, Feskens E, Stehouwer CDA, Schalkwijk C. 2018. Dietary intake of advanced glycation end-products is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clin Nutr. 37(3):919–925.
  • Schmitt A, Schmitt J, Munch G, Gasic-Milencovic J. 2005. Characterization of advanced glycation end-products for biochemical studies: Side-chain modifications and fluorescence characteristics. Anal Biochem. 338(2):201–215.
  • Seiquer I, Rubio L, Peinado M, Delgado-Andrade C, Navarro M. 2014. Maillard reaction products modulate gut microbiota composition in adolescents. Mol Nutr Food Res. 58(7):1552–1560.
  • Semba RD, Ang A, Talegawkar S, Crasto C, Dalal M, Jardack P, Traber MG, Ferrucci L, Arab L. 2012. Dietary intake associated with serum versus urinary carboxymethyl-lysine, a major advanced glycation end-products, in adults: The energetics study. Eur J Clin Nutr. 66(1):3–9.
  • Semba RD, Ferrucci L, Sun K, Beck J, Dalal M, Varadhan R, Walston J, Guralnik JM, Fried LP. 2009. Advanced glycation end-products and their circulating receptors predict cardiovascular disease mortality in older community-dwelling women. Aging Clin Exp Res. 21(2):182–190.
  • Sena C, Matafome P, Crisostomo J, Rodrigues L, Fernandes R, Pereira P, Seica R. 2012. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res. 65(5):497–506.
  • Sims T, Rasmussen L, Oxlund H, Bailey A. 1996. The role of glycation crosslinks in diabetic vascular stiffening. Diabetologia. 39(8):946–951.
  • Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, Valenzano D. 2017. Regulation of lifespan by gut microbiota in short-lived African turquoise killifish. E-life. 6:e27014.
  • Snelson M, Coughlan M. 2019. Dietary advanced glycation end-products: Digestion, metabolism and modulation of gut microbial ecology. Nutrients. 11(2):215.
  • Son S, Hwang I, Han S, Shin J, Shin O, Yu J. 2017. Advanced glycation endproducts impair NLRP3 inflammasome-mediated innate immune responses in macrophages. J Biol Chem. 292(50):20437–20448.
  • Spauwen PJJ, van Eupen MGA, Köhler S, Stehouwer CDA, Verhey FRJ, van der Kallen CJH, Sep SJS, Koster A, Schaper NC, Dagnelie PC, et al. 2015. Associations of advanced glycation end-products with cognitive functions in individuals with and without Type 2 diabetes: The Maasttricht study. J Clin Endocrinol Metab. 100(3):951–960.
  • Stilhano RS, Costa AJ, Nishino MS, Shams S, Bartolomeo CS, Breithaupt-Faloppa AC, Silva EA, Ramirez AL, Prado CM, Ureshino RP. 2020. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors. FASEB J. 34(11):14103–14119.
  • Stockley R, Halpin D, Celli B, Singh D. 2019. Chronic obstructive pulmonary disease biomarkers and their interpretation. Am J Respir Crit Care Med. 199(10):1195–1204.
  • Takeuchi M, Takino J-i, Furuno S, Shirai H, Kawakami M, Muramatsu M, Kobayashi Y, Yamagishi S-i. 2015. Assessment of concentrations of various advanced glycation end-products in beverage and foods commonly consumed in Japan. PLoS One. 10(3):e0118652.
  • Tan K, Chow W, Tam S, Bucala R, Betteridge J. 2004. Association between acute-phase reactants and advanced glycation end-products in Type 2 diabetes. Diabetes Care. 27(1):223–228.
  • Tareke E, Forslund A, Lindh C, Fahlgren C, Ostman E. 2013. Isotope dilution ESI-LC-MS/MS for quantification of free and total Nε-(1-carboxymethyl)-L-lysine and free Nε-(1-carboxy-ethyl)-L-Lysine: Comparison of total Nε-(1-carboxymethyl)-L-lysine levels measured with new method to ELISA assay in gruel samples. Food Chem. 141(4):4253–4259.
  • Teodorowicz M, Hendriks W, Wichers H, Savelkoul H. 2018. Immunomodulation by processed animal feed: Role of Maillard reaction products and advanced glycation end-products (AGEs). Front Immunol. 9:2088.
  • Tessier F. 2010. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol Biol. 58(3):214–219.
  • Tessier FJ, Niquet-Léridon C, Jacolot P, Jouquand C, Genin M, Schmidt A-M, Grossin N, Boulanger E. 2016. Quantitative assessment of organ distribution of dietary protein-bound [13C]-labeled Nε-carboxymethyllysine after chronic oral exposure in mice. Mol Nutr Food Res. 60(11):2446–2456.
  • Touré F, Zahm J-M, Garnotel R, Lambert E, Bonnet N, Schmidt AM, Vitry F, Chanard J, Gillery P, Rieu P. 2008. Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix. Biochem J. 416(2):255–261.
  • Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis G-A, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D. 2019. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol. 14(1):50–59.
  • Tuohy K, Hinton D, Davies S, Crabbe M, Gibson G, Ames J. 2006. Metabolism of Maillard reaction products by the human gut microbiota-implications for health. Mol Nutr Food Res. 50(9):847–857.
  • Uchida T, Shirasawa M, Ware L, Kojima K, Hata Y, Makita K, Mednick G, Matthay Z, Matthay M. 2006. Receptor for advanced glycation end-products is a marker of Type I cell injury in acute lung injury. Am J Respir Crit Care Med. 173(9):1008–1015.
  • Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. 2005. Diet-derived advanced glycation end-products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci. 1043:461–466.
  • Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H. 2010. Advanced glycation end-products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 110(6):911–916.
  • van der Lugt T, Weseler A, Gebbink W, Vrolijk M, Opperhuizen A, Bast A. 1975. Dietary advanced glycation end-products induce an inflammatory response in human macrophages in vitro. Biochem Pharmacol. 24(17):1639–1641.
  • van Rooijen C, Bosch G, van der Poel A, Wierenga P, Alexander L, Hendriks W. 2014. Quantitation of Maillard reaction products in commercially-available pet foods. J Agric Food Chem. 62(35):8883–8891.
  • Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ. 2002. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA. 99(24):15596–15601.
  • Wells-Knecht KJ, Brinkmann E, Wells-Knecht MC, Litchfield JE, Ahmed MU, Reddy S, Zyzak DV, Thorpe SR, Baynes JW. 1996. New biomarkers of Maillard reaction damage to proteins. Nephrol Dial Transplant. 11(S5):41–47.
  • Wong R, Pettit A, Quinn P, Jennings S, Davies J, Ng L. 2003. Advanced glycation end-products stimulate an enhanced neutrophil respiratory burst mediated through activation of cytosolic phospholipase A2 and generation of arachidonic acid. Circulation. 108(15):1858–1864.
  • Xu Y-H, Gao C-L, Guo H-L, Zhang W-Q, Huang W, Tang S-S, Gan W-J, Xu Y, Zhou H, Zhu Q. 2018. Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice. J Endocrinol. 238(3):231–244.
  • Yacoub R, Nugent M, Cai W, Nadkarni GN, Chaves LD, Abyad S, Honan AM, Thomas SA, Zheng W, Valiyaparambil SA, et al. 2017. Advanced glycation end-products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. PLoS One. 12(9):e0184789.
  • Yan S, Yan S, Ramasamy R, Schmidt A. 2009. Tempering the wrath of RAGE: An emerging therapeutic strategy against diabetic complications, neurodegeneration, and inflammation. Ann Med. 41(6):408–422.
  • Yanagibashi T, Hosono A, Oyama A, Tsuda M, Suzuki A, Hachimura S, Takahashi Y, Momose Y, Itoh K, Hirayama K, et al. 2013. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA + B-cells. Immunobiology. 218(4):645–651.
  • Yuan X, Zhao J, Qu W, Zhang Y, Jia B, Fan Z, He Q, Li J. 2018. Accumulation and effects of dietary advanced glycation end-products on the gastrointestinal tract in rats. Int J Food Sci Technol. 53(10):2273–2281.
  • Zandman-Goddard G, Shoenfeld Y. 2008. Hyper-ferritinemia in autoimmunity. Isr Med Assoc J. 10:83–84.
  • Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, Burk RD, Kunisaki Y, Jang J-E, Scheiermann C, et al. 2015. Neutrophil aging is regulated by the microbiome. Nature. 525(7570):528–532.
  • Zheng F, He C, Cai W, Hattori M, Steffes M, Vlassara H. 2002. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab Res Rev. 18(3):224–237.
  • Zhong Y, Li S, Liu S, Szmitko P, He X, Fedak P, Verma S. 2006. C-Reactive protein up-regulates receptor for advanced glycation end-products expression in human endothelial cells. Hypertension. 48(3):504–511.