318
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Binary and quaternary mixtures of perfluoroalkyl substances (PFAS) differentially affect the immune response to influenza A virus infection

, & ORCID Icon
Article: 2340495 | Received 05 Jan 2024, Accepted 03 Apr 2024, Published online: 01 Jul 2024

References

  • Agency for Toxic Substances and Disease Registry [ATSDR]. 2021. Toxicological profile for perfluoroalkyls. Atlanta (GA): Agency for Toxic Substances and Disease Registry.
  • Antoniou E, Colnot T, Zeegers M, Dekant W. 2022. Immunomodulation and exposure to per- and polyfluoroalkyl substances: An overview of the current evidence from animal and human studies. Arch Toxicol. 96(8):2261–2285. doi: 10.1007/s00204-022-03303-4.
  • Barrett T, Inglis S. 1985. Growth, purification, and titration of influenza viruses. In: Mahy B, editor. Virology: A practical approach. Washington (DC): IRL Press. p. 119–150.
  • Boule L, Burke C, Jin G, Lawrence B. 2018. Aryl hydrocarbon receptor signaling modulates antiviral immune responses: Ligand metabolism rather than chemical source is the stronger predictor of outcome. Sci Rep. 8(1):1826. doi: 10.1038/s41598-018-20197-4.
  • Boule L, Winans B, Lawrence B. 2014. Effects of developmental activation of the Ahr on CD4+ T-cell responses to influenza virus infection in adult mice. Environ Health Perspect. 122(11):1201–1208. doi: 10.1289/ehp.1408110.
  • Bulka C, Avula V, Fry R. 2021. Associations of exposure to perfluoroalkyl substances individually and in mixtures with persistent infections: Recent findings from NHANES 1999-2016. Environ Pollut. 275:116619. doi: 10.1016/j.envpol.2021.116619.
  • Calafat A, Kato K, Hubbard K, Jia T, Botelho J, Wong L. 2019. Legacy and alternative per- and polyfluoroalkyl substances in the U.S. general population: Paired serum-urine data from the 2013-2014 National Health and Nutrition Examination Survey. Environ Int. 131:105048. doi: 10.1016/j.envint.2019.105048.
  • Centers for Disease Control [CDC]. 2019, January. Fourth national report on human exposure to environmental chemicals: Updated tables. Vol. 1. Atlanta: Centers for Disease Control and Prevention.
  • Chang E, Adami H, Boffetta P, Wedner H, Mandel J. 2016. A critical review of perfluoroocta-noate and perfluorooctanesulfonate exposure and immunological health conditions in humans. Crit Rev Toxicol. 46(4):279–331. doi: 10.3109/10408444.2015.1122573.
  • Cousins IT, DeWitt JC, Glüge J, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, Scheringer M, Vierke L, et al. 2020. Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environ Sci Process Impacts. 22(7):1444–1460. doi: 10.1039/d0em00147c.
  • De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, et al. 2021. PFAS exposure pathways for humans and wildlife: A synthesis of current knowledge and key gaps in understanding. Environ Toxicol Chem. 40(3):631–657. doi: 10.1002/etc.4935.
  • DeWitt J, Blossom S, Schaider L. 2019. Exposure to per-fluoroalkyl and polyfluoroalkyl substances leads to immunotoxicity: Epidemiological and toxicological evidence. J Expo Sci Environ Epidemiol. 29(2):148–156. doi: 10.1038/s41370-018-0097-y.
  • DeWitt J, Williams W, Creech N, Luebke R. 2016. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARα and T- and B-cell targeting. J Immunotoxicol. 13(1):38–45. doi: 10.3109/1547691X.2014.996682.
  • Dewitt J, Copeland C, Strynar M, Luebke R. 2008. Perfluorooctanoic acid-induced immuno-modulation in adult C57Bl/6J or C57Bl/6N female mice. Environ Health Perspect. 116(5):644–650. doi: 10.1289/ehp.10896.
  • Dong G, Zhang Y, Zheng L, Liu W, Jin Y, He Q. 2009. Chronic effects of perfluorooctanesulfo-nate exposure on immunotoxicity in adult male C57Bl/6 mice. Arch Toxicol. 83(9):805–815. doi: 10.1007/s00204-009-0424-0.
  • Ehrlich V, Bil W, Vandebriel R, Granum B, Luijten M, Lindeman B, Grandjean P, Kaiser A, Hauzenberger I, Hartmann C, et al. 2023. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ Health. 22(1):19. doi: 10.1186/s12940-022-00958-5.
  • European Food Safety Authority [EFSA]. 2020. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 18(9):e06223.
  • Evans N, Conley J, Cardon M, Hartig P, Medlock-Kakaley E, Gray L. Jr. 2022. In vitro activity of a panel of per- and polyfluoroalkyl substances (PFAS), fatty acids, and pharmaceuticals in peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, and estrogen receptor assays. Toxicol Appl Pharmacol. 449:116136. doi: 10.1016/j.taap.2022.116136.
  • Fair P, Driscoll E, Mollenhauer M, Bradshaw S, Yun S, Kannan K, Bossart G, Keil D, Peden-Adams M. 2011. Effects of environmentally-relevant levels of perfluorooctane sulfonate on clinical parameters and immunological functions in B6C3F1 mice. J Immunotoxicol. 8(1):17–29. doi: 10.3109/1547691X.2010.527868.
  • Feingold B, Vegosen L, Davis M, Leibler J, Peterson A, Silbergeld E. 2010. A niche for infectious disease in environmental health: Re-thinking the toxicological paradigm. Environ Health Perspect. 118(8):1165–1172. doi: 10.1289/ehp.0901866.
  • Fenton S, Ducatman A, Boobis A, DeWitt J, Lau C, Ng C, Smith J, Roberts S. 2021. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ Toxicol Chem. 40(3):606–630. doi: 10.1002/etc.4890.
  • Franchini A, Lawrence B. 2018. Environmental exposures are hidden modifiers of anti-viral immunity. Curr Opin Toxicol. 10:54–59. doi: 10.1016/j.cotox.2018.01.004.
  • Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, Lohmann R, Ng CA, Trier X, Wang Z. 2020. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 22(12):2345–2373. doi: 10.1039/d0em00291g.
  • Grandjean P, Timmermann CAG, Kruse M, Nielsen F, Vinholt PJ, Boding L, Heilmann C, Mølbak K. 2020. Severity of COIVD-19 at elevated exposure to perfluorinated alkylates. PLoS One. 15(12):e0244815. doi: 10.1371/journal.pone.0244815.
  • Guelfo J, Adamson D. 2018. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFAS) in U.S. drinking water. Environ Pollut. 236:505–513. doi: 10.1016/j.envpol.2018.01.066.
  • Houser C, Lawrence B. 2022. The aryl hydrocarbon receptor modulates T-follicular helper cell responses to influenza virus infection in mice. J Immunol. 208(10):2319–2330. doi: 10.4049/jimmunol.2100936.
  • Ji J, Song L, Wang J, Yang Z, Yan H, Li T, Yu L, Jian L, Jiang F, Li J, et al. 2021. Association between urinary per- and poly-fluoroalkyl substances and COVID-19 susceptibility. Environ Int. 153:106524.,. doi: 10.1016/j.envint.2021.106524.
  • Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM. 2011. Trends in exposure to polyfluoroalkyl chemicals in the U.S. population: 1999-2008. Environ Sci Technol. 45(19):8037–8045. doi: 10.1021/es1043613.
  • Kohlmeier J, Woodland D. 2009. Immunity to respiratory viruses. Annu Rev Immunol. 27(1):61–82. doi: 10.1146/annurev.immunol.021908.132625.
  • La Gruta N, Turner S. 2014. T-Cell-mediated immunity to influenza: Mechanisms of viral control. Trends Immunol. 35(8):396–402. doi: 10.1016/j.it.2014.06.004.
  • Lam J, Baumgarth N. 2019. The multifaceted B-cell response to influenza virus. J Immunol. 202(2):351–359. doi: 10.4049/jimmunol.1801208.
  • Lawrence B, Roberts A, Neumiller J, Cundiff J, Woodland D. 2006. Aryl hydrocarbon receptor activation impairs the priming but not the recall of influenza virus-specific CD8+ T-cells in the lung. J Immunol. 177(9):5819–5828. doi: 10.4049/jimmunol.177.9.5819.
  • Li Y, Andersson A, Xu Y, Pineda D, Nilsson CA, Lindh C, Jakobsson K, Fletcher T. 2022. Determinants of serum half-lives for linear and branched perfluoroalkyl substances after long-term high exposure-a study in Ronneby, Sweden. Environ Int. 163:107198. doi: 10.1016/j.envint.2022.107198.
  • Li D, Zhang L, Zhang Y, Guan S, Gong X, Wang X. 2019. Maternal exposure to perfluoro-octanoic acid (PFOA) causes liver toxicity through PPARα pathway and lowered histone acetylation in female offspring mice. Environ Sci Pollut Res Int. 26(18):18866–18875. doi: 10.1007/s11356-019-05258-z.
  • Maddalon A, Pierzchalski A, Kretschmer T, Bauer M, Zenclussen AC, Marinovich M, Corsini E, Herberth G. 2023. Mixtures of per- and poly-fluoroalkyl substances (PFAS) reduce the in vitro activation of human T-cells and basophils. Chemosphere. 336:139204. doi: 10.1016/j.chemosphere.2023.139204.
  • McDonough C, Ward C, Hu Q, Vance S, Higgins C, DeWitt J. 2020. Immunotoxicity of an electrochemically-fluorinated aqueous film-forming foam. Toxicol Sci. 178(1):104–114. doi: 10.1093/toxsci/kfaa138.
  • Narizzano A, Bohannon M, East A, Guigni B, Quinn M. Jr. 2023. Reproductive and immune effects emerge at similar thresholds of PFHXs in deer mice. Reprod Toxicol. 120:108421. doi: 10.1016/j.reprotox.2023.108421.
  • Nera K-P, Kyläniemi MK, Lassila O. 2015. Regulation of B-cell to plasma cell transition within the follicular B-cell response. Scand J Immunol. 82(3):225–234. doi: 10.1111/sji.12336.
  • Nilsson S, Smurthwaite K, Aylward LL, Kay M, Toms LM, King L, Marrington S, Barnes C, Kirk MD, Mueller JF, et al. 2022. Serum concentration trends and apparent half-lives of per- and polyfluoroalkyl substances (PFAS) in Australian firefighters. Int J Hyg Environ Health. 246:114040. doi: 10.1016/j.ijheh.2022.114040.
  • Ojo A, Peng C, Ng J. 2021. Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. J Hazard Mater. 407:124863. doi: 10.1016/j.jhazmat.2020.124863.
  • Peden-Adams M, Keller J, Eudaly J, Berger J, Gilkeson G, Keil D. 2008. Suppression of humoral immunity in mice following exposure to perfluorooctane sulfonate. Toxicol Sci. 104(1):144–154. doi: 10.1093/toxsci/kfn059.
  • Pérez F, Nadal M, Navarro-Ortega A, Fàbrega F, Domingo JL, Barceló D, Farré M. 2013. Accumulation of perfluoroalkyl substances in human tissues. Environ Int. 59:354–362. doi: 10.1016/j.envint.2013.06.004.
  • Post G, Louis J, Lippincott R, Procopio N. 2013. Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems. Environ Sci Technol. 47(23):13266–13275. doi: 10.1021/es402884x.
  • Post C, Myers J, Winans B, Lawrence B. 2023. Postnatal administration of S-adenosylmethi-onine restores developmental Ahr activation-induced deficits in CD8+ T-cell function during influenza a virus infection. Toxicol Sci. 192(2):233–246. doi: 10.1093/toxsci/kfad019.
  • Rockwell C, Turley A, Cheng X, Fields P, Klaassen C. 2013. Acute immunotoxic effects of perfluorononanoic acid (PFNA) in C57Bl/6 mice. Clin Exp Pharmacol. (Suppl. 4):S4-002.
  • Rockwell C, Turley A, Cheng X, Fields P, Klaassen C. 2017. Persistent alterations in immune cell populations and function from a single dose of perfluorononanoic acid (PFNA) in C57Bl/6 mice. Food Chem Toxicol. 100:24–33. doi: 10.1016/j.fct.2016.12.004.
  • Rosato I, Bonato T, Fletcher T, Batzella E, Canova C. 2023. Estimation of per- and poly-fluoro-alkyl substances (PFAS) half-lives in human studies: A systematic review and meta-analysis. Environ Res. 242:117743. doi: 10.1016/j.envres.2023.117743.
  • Rosen M, Das K, Rooney J, Abbott B, Lau C, Corton J. 2017. PPARα-independent transcrip-tional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology. 387:95–107. doi: 10.1016/j.tox.2017.05.013.
  • Schlezinger J, Puckett H, Oliver J, Nielsen G, Heiger-Bernays W, Webster T. 2020. Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized PPARα mice fed an american diet. Toxicol Appl Pharmacol. 405:115204. doi: 10.1016/j.taap.2020.115204.
  • Smalling KL, Romanok KM, Bradley PM, Morriss MC, Gray JL, Kanagy LK, Gordon SE, Williams BM, Breitmeyer SE, Jones DK, et al. 2023. Per- and polyfluoroalkyl substances (PFAS) in United States tap water: Comparison of underserved private-well and public-supply exposures and associated health implications. Environ Int. 178:108033. doi: 10.1016/j.envint.2023.108033.
  • Strutt T, McKinstry K, Marshall N, Vong A, Dutton R, Swain S. 2013. Multi-pronged CD4+ T-cell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunol Rev. 255(1):149–164. doi: 10.1111/imr.12088.
  • Sunderland E, Hu X, Dassuncao C, Tokranov A, Wagner C, Allen J. 2019. A review of the pathways of human exposure to poly- and per-fluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 29(2):131–147. doi: 10.1038/s41370-018-0094-1.
  • Taylor K, Woodlief T, Ahmed A, Hu Q, Duncker P, DeWitt J. 2023. Quantifying the impact of pfoa exposure on b-cell development and antibody production. Toxicol Sci. 194(1):101–108. doi: 10.1093/toxsci/kfad043.
  • Torres L, Redko A, Limper C, Imbiakha B, Chang S, August A. 2021. Effect of perfluorooctane-sulfonic acid (PFOS) on immune cell development and function in mice. Immunol Lett. 233:31–41. doi: 10.1016/j.imlet.2021.03.006.
  • United States Environmental Protection Agency [USEPA]. 2022. Lifetime drinking water health advisories for four perfluoroalkyl substances
  • USEPA. 2023a. Framework for estimating non-cancer health risks associated with mixtures of per- and poly-fluoroalkyl substances (PFAS).
  • USEPA. 2023b. Per- and poly-fluoroalkyl substances national primary drinking water regulation. EPA-HQ-OW-2022-0114-0027. 18638–18754.
  • USEPA. 2023c. Public comment draft - toxicity assessment and proposed maximum contaminant level goal (MCLG) for perfluorooctane sulfonic acid (PFOS) (CASRN 1763-23-1) in drinking water.
  • USEPA. 2023d. Public comment draft - toxicity assessment and proposed maximum contaminant level goal (MCLG) for perfluorooctanoic acid (PFOA) (CASRN 335-67-1) in drinking water.
  • Warren T, Mitchell K, Lawrence B. 2000. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses the humoral and cell-mediated immune responses to influenza A virus without affecting cytolytic activity in the lung. Toxicol Sci. 56(1):114–123. doi: 10.1093/toxsci/56.1.114.
  • Winans B, Nagari A, Chae M, Post C, Ko C, Puga A, Kraus W, Lawrence B. 2015. Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T-cell responses. J Immunol. 194(9):4446–4457. doi: 10.4049/jimmunol.1402044.